Darwinism (Wallace)/Chapter II

From Wikisource
Jump to: navigation, search
Darwinism (Wallace) by Alfred Russel Wallace
Chapter II - THE STRUGGLE FOR EXISTENCE

CHAPTER II

THE STRUGGLE FOR EXISTENCE

Its importance—The struggle among plants—Among animals—Illustrative cases—Succession of trees in forests of Denmark—The struggle for existence on the Pampas—Increase of organisms in a geometrical ratio—Examples of great powers of increase of animals—Rapid increase and wide spread of plants—Great fertility not essential to rapid increase—Struggle between closely allied species most severe—The ethical aspect of the struggle for existence.

There is perhaps no phenomenon of nature that is at once so important, so universal; and so little understood, as the struggle for existence continually going on among all organised beings. To most persons nature appears calm, orderly, and peaceful. They see the birds singing in the trees, the insects hovering over the flowers, the squirrel climbing among the tree-tops, and all living things in the possession of health and vigour, and in the enjoyment of a sunny existence. But they do not see, and hardly ever think of, the means by which this beauty and harmony and enjoyment is brought about. They do not see the constant and daily search after food, the failure to obtain which means weakness or death; the constant effort to escape enemies; the ever-recurring struggle against the forces of nature. This daily and hourly struggle, this incessant warfare, is nevertheless the very means by which much of the beauty and harmony and enjoyment in nature is produced, and also affords one of the most important elements in bringing about the origin of species. We must, therefore, devote some time to the consideration of its various aspects and of the many curious phenomena to which it gives rise.

It is a matter of common observation that if weeds are allowed to grow unchecked in a garden they will soon destroy a number of the flowers. It is not so commonly known that if a garden is left to become altogether wild, the weeds that first take possession of it, often covering the whole surface of the ground with two or three different kinds, will themselves be supplanted by others, so that in a few years many of the original flowers and of the earliest weeds may alike have disappeared. This is one of the very simplest cases of the struggle for existence, resulting in the successive displacement of one set of species by another; but the exact causes of this displacement are by no means of such a simple nature. All the plants concerned may be perfectly hardy, all may grow freely from seed, yet when left alone for a number of years, each set is in turn driven out by a succeeding set, till at the end of a considerable period—a century or a few centuries perhaps—hardly one of the plants which first monopolised the ground would be found there.

Another phenomenon of an analogous kind is presented by the different behaviour of introduced wild plants or animals into countries apparently quite as well suited to them as those which they naturally inhabit. Agassiz, in his work on Lake Superior, states that the roadside weeds of the northeastern United States, to the number of 130 species, are all European, the native weeds having disappeared westwards; and in New Zealand there are no less than 250 species of naturalised European plants, more than 100 species of which have spread widely over the country, often displacing the native vegetation. On the other hand, of the many hundreds of hardy plants which produce seed freely in our gardens, very few ever run wild, and hardly any have become common. Even attempts to naturalise suitable plants usually fail; for A. de Candolle states that several botanists of Paris, Geneva, and especially of Montpellier, have sown the seeds of many hundreds of species of hardy exotic plants in what appeared to be the most favourable situations, but that, in hardly a single case, has any one of them become naturalised.[1] Even a plant like the potato—so widely cultivated, so hardy, and so well adapted to spread by means of its many-eyed tubers—has not established itself in a wild state in any part of Europe. It would be thought that Australian plants would easily run wild in New Zealand. But Sir Joseph Hooker informs us that the late Mr. Bidwell habitually scattered Australian seeds during his extensive travels in New Zealand, yet only two or three Australian plants appear to have established themselves in that country, and these only in cultivated or newly moved soil.

These few illustrations sufficiently show that all the plants of a country are, as De Candolle says, at war with each other, each one struggling to occupy ground at the expense of its neighbour. But, besides this direct competition, there is one not less powerful arising from the exposure of almost all plants to destruction by animals. The buds are destroyed by birds, the leaves by caterpillars, the seeds by weevils; some insects bore into the trunk, others burrow in the twigs and leaves; slugs devour the young seedlings and the tender shoots, wireworms gnaw the roots. Herbivorous mammals devour many species bodily, while some uproot and devour the buried tubers.

In animals, it is the eggs or the very young that suffer most from their various enemies; in plants, the tender seedlings when they first appear above the ground. To illustrate this latter point Mr. Darwin cleared and dug a piece of ground three feet long and two feet wide, and then marked all the seedlings of weeds and other plants which came up, noting what became of them. The total number was 357, and out of these no less than 295 were destroyed by slugs and insects. The direct strife of plant with plant is almost equally fatal when the stronger are allowed to smother the weaker. When turf is mown or closely browsed by animals, a number of strong and weak plants live together, because none are allowed to grow much beyond the rest; but Mr. Darwin found that when the plants which compose such turf are allowed to grow up freely, the stronger kill the weaker. In a plot of turf three feet by four, twenty distinct species of plants were found to be growing, and no less than nine of these perished altogether when the other species were allowed to grow up to their full size.[2]

But besides having to protect themselves against competing plants and against destructive animals, there is a yet deadlier enemy in the forces of inorganic nature. Each species can sustain a certain amount of heat and cold, each requires a certain amount of moisture at the right season, each wants a proper amount of light or of direct sunshine, each needs certain elements in the soil; the failure of a due proportion in these inorganic conditions causes weakness, and thus leads to speedy death. The struggle for existence in plants is, therefore, threefold in character and infinite in complexity, and the result is seen in their curiously irregular distribution over the face of the earth. Not only has each country its distinct plants, but every valley, every hillside, almost every hedgerow, has a different set of plants from its adjacent valley, hillside, or hedgerow—if not always different in the actual species yet very different in comparative abundance, some which are rare in the one being common in the other. Hence it happens that slight changes of conditions often produce great changes in the flora of a country. Thus in 1740 and the two following years the larva of a moth (Phalaena graminis) committed such destruction in many of the meadows of Sweden that the grass was greatly diminished in quantity, and many plants which were before choked by the grass sprang up, and the ground became variegated with a multitude of different species of flowers. The introduction of goats into the island of St. Helena led to the entire destruction of the native forests, consisting of about a hundred distinct species of trees and shrubs, the young plants being devoured by the goats as fast as they grew up. The camel is a still greater enemy to woody vegetation than the goat, and Mr. Marsh believes that forests would soon cover considerable tracts of the Arabian and African deserts if the goat and the camel were removed from them.[3] Even in many parts of our own country the existence of trees is dependent on the absence of cattle. Mr. Darwin observed, on some extensive heaths near Farnham, in Surrey, a few clumps of old Scotch firs, but no young trees over hundreds of acres. Some portions of the heath had, however, been enclosed a few years before, and these enclosures were crowded with young fir-trees growing too close together for all to live; and these were not sown or planted, nothing having been done to the ground beyond enclosing it so as to keep out cattle. On ascertaining this, Mr. Darwin was so much surprised that he searched among the heather in the unenclosed parts, and there he found multitudes of little trees and seedlings which had been perpetually browsed down by the cattle. In one square yard, at a point about a hundred yards from one of the old clumps of firs, he counted thirty-two little trees, and one of them had twenty-six rings of growth, showing that it had for many years tried to raise its head above the stems of the heather and had failed. Yet this heath was very extensive and very barren, and, as Mr. Darwin remarks, no one would ever have imagined that cattle would have so closely and so effectually searched it for food.

In the case of animals, the competition and struggle are more obvious. The vegetation of a given district can only support a certain number of animals, and the different kinds of plant-eaters will compete together for it. They will also have insects for their competitors, and these insects will be kept down by birds, which will thus assist the mammalia. But there will also be carnivora destroying the herbivora; while small rodents, like the lemming and some of the fieldmice, often destroy so much vegetation as materially to affect the food of all the other groups of animals. Droughts, floods, severe winters, storms and hurricanes will injure these in various degrees, but no one species can be diminished in numbers without the effect being felt in various complex ways by all the rest. A few illustrations of this reciprocal action must be given.

Illustrative Cases of the Struggle for Life.

Sir Charles Lyell observes that if, by the attacks of seals or other marine foes, salmon are reduced in numbers, the consequence will be that otters, living far inland, will be deprived of food and will then destroy many young birds or quadrupeds, so that the increase of a marine animal may cause the destruction of many land animals hundreds of miles away. Mr. Darwin carefully observed the effects produced by planting a few hundred acres of Scotch fir, in Staffordshire, on part of a very extensive heath which had never been cultivated. After the planted portion was about twenty-five years old he observed that the change in the native vegetation was greater than is often seen in passing from one quite different soil to another. Besides a great change in the proportional numbers of the native heath-plants, twelve species which could not be found on the heath flourished in the plantations. The effect on the insect life must have been still greater, for six insectivorous birds which were very common in the plantations were not to be seen on the heath, which was, however, frequented by two or three different species of insectivorous birds. It would have required continued study for several years to determine all the differences in the organic life of the two areas, but the facts stated by Mr. Darwin are sufficient to show how great a change may be effected by the introduction of a single kind of tree and the keeping out of cattle.

The next case I will give in Mr. Darwin's own words: "In several parts of the world insects determine the existence of cattle. Perhaps Paraguay offers the most curious instance of this; for here neither cattle nor horses nor dogs have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater numbers, in Paraguay, of a certain fly which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by other parasitic insects. Hence, if certain insectivorous birds were to decrease in Paraguay, the parasitic insects would probably increase; and this would lessen the number of the navel-frequenting flies—then cattle and horses would become feral, and this would greatly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects, and this, as we have just seen in Staffordshire, the insectivorous birds, and so onward in ever-increasing circles of complexity. Not that under nature the relations will ever be as simple as this. Battle within battle must be continually recurring with varying success; and yet in the long run the forces are so nicely balanced, that the face of nature remains for a long time uniform, though assuredly the merest trifle would give the victory to one organic being over another."[4] Such cases as the above may perhaps be thought exceptional, but there is good reason to believe that they are by no means rare, but are illustrations of what is going on in every part of the world, only it is very difficult for us to trace out the complex reactions that are everywhere occurring. The general impression of the ordinary observer seems to be that wild animals and plants live peaceful lives and have few troubles, each being exactly suited to its place and surroundings, and therefore having no difficulty in maintaining itself. Before showing that this view is, everywhere and always, demonstrably untrue, we will consider one other case of the complex relations of distinct organisms adduced by Mr. Darwin, and often quoted for its striking and almost eccentric character. It is now well known that many flowers require to be fertilised by insects in order to produce seed, and this fertilisation can, in some cases, only be effected by one particular species of insect to which the flower has become specially adapted. Two of our common plants, the wild heart's-ease ([[w:Viola tricolor|Viola tricolor]) and the red clover (Trifolium pratense), are thus fertilised by humble-bees almost exclusively, and if these insects are prevented from visiting the flowers, they produce either no seed at all or exceedingly few. Now it is known that field-mice destroy the combs and nests of humble-bees, and Colonel Newman, who has paid great attention to these insects, believes that more than two-thirds of all the humble-bees' nests in England are thus destroyed. But the number of mice depends a good deal on the number of cats; and the same observer says that near villages and towns he has found the nests of humble-bees more numerous than elsewhere, which he attributes to the number of cats that destroy the mice. Hence it follows, that the abundance of red clover and wild heart's-ease in a district will depend on a good supply of cats to kill the mice, which would otherwise destroy and keep down the humble-bees and prevent them from fertilising the flowers. A chain of connection has thus been found between such totally distinct organisms as flesh-eating mammalia and sweet-smelling flowers, the abundance or scarcity of the one closely corresponding to that of the other!

The following account of the struggle between trees in the forests of Denmark, from the researches of M. Hansten-Blangsted, strikingly illustrates our subject.[5] The chief combatants are the beech and the birch, the former being everywhere successful in its invasions. Forests composed wholly of birch are now only found in sterile, sandy tracts; everywhere else the trees are mixed, and wherever the soil is favourable the beech rapidly drives out the birch. The latter loses its branches at the touch of the beech, and devotes all its strength to the upper part where it towers above the beech. It may live long in this way, but it succumbs ultimately in the fight—of old age if of nothing else, for the life of the birch in Denmark is shorter than that of the beech. The writer believes that light (or rather shade) is the cause of the superiority of the latter, for it has a greater development of its branches than the birch, which is more open and thus allows the rays of the sun to pass through to the soil below, while the tufted, bushy top of the beech preserves a deep shade at its base. Hardly any young plants can grow under the beech except its own shoots; and while the beech can nourish under the shade of the birch, the latter dies immediately under the beech. The birch has only been saved from total extermination by the facts that it had possession of the Danish forests long before the beech ever reached the country, and that certain districts are unfavourable to the growth of the latter. But wherever the soil has been enriched by the decomposition of the leaves of the birch the battle begins. The birch still flourishes on the borders of lakes and other marshy places, where its enemy cannot exist. In the same way, in the forests of Zeeland, the fir forests are disappearing before the beech. Left to themselves, the firs are soon displaced by the beech. The struggle between the latter and the oak is longer and more stubborn, for the branches and foliage of the oak are thicker, and offer much resistance to the passage of light. The oak, also, has greater longevity; but, sooner or later, it too succumbs, because it cannot develop in the shadow of the beech. The earliest forests of Denmark were mainly composed of aspens, with which the birch was apparently associated; gradually the soil was raised, and the climate grew milder; then the fir came and formed large forests. This tree ruled for centuries, and then ceded the first place to the holm-oak, which is now giving way to the beech. Aspen, birch, fir, oak, and beech appear to be the steps in the struggle for the survival of the fittest among the forest-trees of Denmark.

It may be added that in the time of the Romans the beech was the principal forest-tree of Denmark as it is now, while in the much earlier bronze age, represented by the later remains found in the peat bogs, there were no beech-trees, or very few, the oak being the prevailing tree, while in the still earlier stone period the fir was the most abundant. The beech is a tree essentially of the temperate zone, having its northern limit considerably southward of the oak, fir, birch, or aspen, and its entrance into Denmark was no doubt due to the amelioration of the climate after the glacial epoch had entirely passed away. We thus see how changes of climate, which are continually occurring owing either to cosmical or geographical causes, may initiate a struggle among plants which may continue for thousands of years, and which must profoundly modify the relations of the animal world, since the very existence of innumerable insects, and even of many birds and mammals, is dependent more or less completely on certain species of plants.

The Struggle for Existence on the Pampas.

Another illustration of the struggle for existence,in which both plants and animals are implicated, is afforded by the pampas of the southern part of South America. The absence of trees from these vast plains has been imputed by Mr. Darwin to the supposed inability of the tropical and sub-tropical forms of South America to thrive on them, and there being no other source from which they could obtain a supply; and that explanation was adopted by such eminent botanists as Mr. Ball and Professor Asa Gray. This explanation has always seemed to me unsatisfactory, because there are ample forests both in the temperate regions of the Andes and on the whole west coast down to Terra del Fuego; and it is inconsistent with what we know of the rapid variation and adaptation of species to new conditions. What seems a more satisfactory explanation has been given by Mr. Edwin Clark, a civil engineer, who resided nearly two years in the country and paid much attention to its natural history. He says: "The peculiar characteristics of these vast level plains which descend from the Andes to the great river basin in unbroken monotony, are the absence of rivers or water-storage, and the periodical occurrence of droughts, or 'siccos,' in the summer months. These conditions determine the singular character both of its flora and fauna.

"The soil is naturally fertile and favourable for the growth of trees, and they grow luxuriantly wherever they are protected. The eucalyptus is covering large tracts wherever it is enclosed, and willows, poplars, and the fig surround every estancia when fenced in.

"The open plains are covered with droves of horses and cattle, and overrun by numberless wild rodents, the original tenants of the pampas. During the long periods of drought, which are so great a scourge to the country, these animals are starved by thousands, destroying, in their efforts to live, every vestige of vegetation. In one of these 'siccos,' at the time of my visit, no less than 50,000 head of oxen and sheep and horses perished from starvation and thirst, after tearing deep out of the soil every trace of vegetation, including the wiry roots of the pampas-grass. Under such circumstances the existence of an unprotected tree is impossible. The only plants that hold their own, in addition to the indestructible thistles, grasses, and clover, are a little herbaceous oxalis, producing viviparous buds of extraordinary vitality, a few poisonous species, such as the hemlock, and a few tough, thorny dwarf-acacias and wiry rushes, which even a starving rat refuses.

"Although the cattle are a modern introduction, the numberless indigenous rodents must always have effectually prevented the introduction of any other species of plants; large tracts are still honeycombed by the ubiquitous biscacho, a gigantic rabbit; and numerous other rodents still exist, including rats and mice, pampas-hares, and the great nutria and carpincho (capybara) on the river banks."[6]

Mr. Clark further remarks on the desperate struggle for existence which characterises the bordering fertile zones, where rivers and marshy plains permit a more luxuriant and varied vegetable and animal life. After describing how the river sometimes rose 30 feet in eight hours, doing immense destruction, and the abundance of the larger carnivora and large reptiles on its banks, he goes on: "But it was among the flora that the principle of natural selection was most prominently displayed. In such a district—overrun with rodents and escaped cattle, subject to floods that carried away whole islands of botany, and especially to droughts that dried up the lakes and almost the river itself—no ordinary plant could live, even on this rich and watered alluvial debris. The only plants that escaped the cattle were such as were either poisonous, or thorny, or resinous, or indestructibly tough. Hence we had only a great development of solanums, talas, acacias, euphorbias, and laurels. The buttercup is replaced by the little poisonous yellow oxalis with its viviparous buds; the passion-flowers, asclepiads, bignonias, convolvuluses, and climbing leguminous plants escape both floods and cattle by climbing the highest trees and towering overhead in a flood of bloom. The ground plants are the portulacas, turneras, and oenotheras, bitter and ephemeral, on the bare rock, and almost independent of any other moisture than the heavy dews. The pontederias, alismas, and plantago, with grasses and sedges, derive protection from the deep and brilliant pools; and though at first sight the 'monte' doubtless impresses the traveller as a scene of the wildest confusion and ruin, yet, on closer examination, we found it far more remarkable as a manifestation of harmony and law, and a striking example of the marvellous power which plants, like animals, possess, of adapting themselves to the local peculiarities of their habitat, whether in the fertile shades of the luxuriant 'monte' or on the arid, parched-up plains of the treeless pampas."

A curious example of the struggle between plants has been communicated to me by Mr. John Ennis, a resident in New Zealand. The English water-cress grows so luxuriantly in that country as to completely choke up the rivers, sometimes leading to disastrous floods, and necessitating great outlay to keep the stream open. But a natural remedy has now been found in planting willows on the banks. The roots of these trees penetrate the bed of the stream in every direction, and the water-cress, unable to obtain the requisite amount of nourishment, gradually disappears.

Increase of Organisms in a Geometrical Ratio.

The facts which have now been adduced, sufficiently prove that there is a continual competition, and struggle, and war going on in nature, and that each species of animal and plant affects many others in complex and often unexpected ways. We will now proceed to show the fundamental cause of this struggle, and to prove that it is ever acting over the whole field of nature, and that no single species of animal or plant can possibly escape from it. This results from the fact of the rapid increase, in a geometrical ratio, of all the species of animals and plants. In the lower orders this increase is especially rapid, a single flesh-fly (Musca carnaria) producing 20,000 larvae, and these growing so quickly that they reach their full size in five days; hence the great Swedish naturalist, Linnaeus, asserted that a dead horse would be devoured by three of these flies as quickly as by a lion. Each of these larvae remains in the pupa state about five or six days, so that each parent fly may be increased ten thousand-fold in a fortnight. Supposing they went on increasing at this rate during only three months of summer, there would result one hundred millions of millions of millions for each fly at the commencement of summer,—a number greater probably than exists at any one time in the whole world. And this is only one species, while there are thousands of other species increasing also at an enormous rate; so that, if they were unchecked, the whole atmosphere would be dense with flies, and all animal food and much of animal life would be destroyed by them. To prevent this tremendous increase there must be incessant war against these insects, by insectivorous birds and reptiles as well as by other insects, in the larva as well as in the perfect state, by the action of the elements in the form of rain, hail, or drought, and by other unknown causes; yet we see nothing of this ever-present war, though by its means alone, perhaps, we are saved from famine and pestilence.

Let us now consider a less extreme and more familiar case. We possess a considerable number of birds which, like the redbreast, sparrow, the four common titmice, the thrush, and the blackbird, stay with us all the year round These lay on an average six eggs, but, as several of them have two or more broods a year, ten will be below the average of the year's increase. Such birds as these often live from fifteen to twenty years in confinement, and we cannot suppose them to live shorter lives in a state of nature, if unmolested; but to avoid possible exaggeration we will take only ten years as the average duration of their lives. Now, if we start with a single pair, and these are allowed to live and breed, unmolested, till they die at the end of ten years,—as they might do if turned loose into a good-sized island with ample vegetable and insect food, but no other competing or destructive birds or quadrupeds—their numbers would amount to more than twenty millions. But we know very well that our bird population is no greater, on the average, now than it was ten years ago. Year by year it may fluctuate a little according as the winters are more or less severe, or from other causes, but on the whole there is no increase. What, then, becomes of the enormous surplus population annually produced? It is evident they must all die or be killed, somehow; and as the increase is, on the average, about five to one, it follows that, if the average number of birds of all kinds in our islands is taken at ten millions—and this is probably far under the mark—then about fifty millions of birds, including eggs as possible birds, must annually die or be destroyed. Yet we see nothing, or almost nothing, of this tremendous slaughter of the innocents going on all around us. In severe winters a few birds are found dead, and a few feathers or mangled remains show us where a wood-pigeon or some other bird has been destroyed by a hawk, but no one would imagine that five times as many birds as the total number in the country in early spring die every year. No doubt a considerable proportion of these do not die here but during or after migration to other countries, but others which are bred in distant countries come here, and thus balance the account. Again, as the average number of young produced is four or five times that of the parents, we ought to have at least five times as many birds in the country at the end of summer as at the beginning, and there is certainly no such enormous disproportion as this. The fact is, that the destruction commences, and is probably most severe, with nestling birds, which are often killed by heavy rains or blown away by severe storms, or left to die of hunger if either of the parents is killed; while they offer a defenceless prey to jackdaws, jays, and magpies, and not a few are ejected from their nests by their foster-brothers the cuckoos. As soon as they are fledged and begin to leave the nest great numbers are destroyed by buzzards, sparrow-hawks, and shrikes. Of those which migrate in autumn a considerable proportion are probably lost at sea or otherwise destroyed before they reach a place of safety; while those which remain with us are greatly thinned by cold and starvation during severe winters. Exactly the same thing goes on with every species of wild animal and plant from the lowest to the highest. All breed at such a rate, that in a few years the progeny of any one species would, if allowed to increase unchecked, alone monopolise the land; but all alike are kept within bounds by various destructive agencies, so that, though the numbers of each may fluctuate, they can never permanently increase except at the expense of some others, which must proportionately decrease.

Cases showing the Great Powers of Increase of Animals.

As the facts now stated are the very foundation of the theory we are considering, and the enormous increase and perpetual destruction continually going on require to be kept ever present in the mind, some direct evidence of actual cases of increase must be adduced. That even the larger animals, which breed comparatively slowly, increase enormously when placed under favourable conditions in new countries, is shown by the rapid spread of cattle and horses in America. Columbus, in his second voyage, left a few black cattle at St. Domingo, and these ran wild and increased so much that, twenty-seven years afterwards, herds of from 4000 to 8000 head were not uncommon. Cattle were afterwards taken from this island to Mexico and to other parts of America, and in 1587, sixty-five years after the conquest of Mexico, the Spaniards exported 64,350 hides from that country and 35,444 from St. Domingo, an indication of the vast numbers of these animals which must then have existed there, since those captured and killed could have been only a small portion of the whole. In the pampas of Buenos Ayres there were, at the end of the last century, about twelve million cows and three million horses, besides great numbers in all other parts of America where open pastures offered suitable conditions. Asses, about fifty years after their introduction, ran wild and multiplied so amazingly in Quito, that the Spanish traveller Ulloa describes them as being a nuisance. They grazed together in great herds, defending themselves with their mouths, and if a horse strayed among them they all fell upon him and did not cease biting and kicking till they left him dead. Hogs were turned out in St. Domingo by Columbus in 1493, and the Spaniards took them to other places where they settled, the result being, that in about half a century these animals were found in great numbers over a large part of America, from 25° north to 40° south latitude. More recently, in New Zealand, pigs have multiplied so greatly in a wild state as to be a serious nuisance and injury to agriculture. To give some idea of their numbers, it is stated that in the province of Nelson there were killed in twenty months 25,000 wild pigs.[7] Now, in the case of all these animals, we know that in their native countries, and even in America at the present time, they do not increase at all in numbers; therefore the whole normal increase must be kept down, year by year, by natural or artificial means of destruction.

Rapid Increase and Wide Spread of Plants.

In the case of plants, the power of increase is even greater and its effects more distinctly visible. Hundreds of square miles of the plains of La Plata are now covered with two or three species of European thistle, often to the exclusion of almost every other plant; but in the native countries of these thistles they occupy, except in cultivated or waste ground, a very subordinate part in the vegetation. Some American plants, like the cotton-weed (Asclepias curussayica), have now become common weeds over a large portion of the tropics. White clover (Trifolium repens) spreads over all the temperate regions of the world, and in New Zealand is exterminating many native species, including even the native flax (Phormium tenax), a large plant with iris-like leaves 5 or 6 feet high. Mr. W. L. Travers has paid much attention to the effects of introduced plants in New Zealand, and notes the following species as being especially remarkable. The common knotgrass (Polygonum aviculare) grows most luxuriantly, single plants covering a space 4 or 5 feet in diameter, and sending their roots 3 or 4 feet deep. A large sub-aquatic dock (Rumex obtusifolius) abounds in every river-bed, even far up among the mountains. The common sow-thistle (Sonchus oleraceus) grows all over the country up to an elevation of 6000 feet. The water-cress (Nasturtium officinale) grows with amazing vigour in many of the rivers, forming stems 12 feet long and ¾ inch in diameter, and completely choking them up. It cost £300 a year to keep the Avon at Christchurch free from it. The sorrel (Rumex acetosella) covers hundreds of acres with a sheet of red. It forms a dense mat, exterminating other plants, and preventing cultivation. It can, however, be itself exterminated by sowing the ground with red clover, which will also vanquish the Polygonum aviculare. The most noxious weed in New Zealand appears, however, to be the Hypochaeris radicata, a coarse yellow-flowered composite not uncommon in our meadows and waste places. This has been introduced with grass seeds from England, and is very destructive. It is stated that excellent pasture was in three years destroyed by this weed, which absolutely displaced every other plant on the ground. It grows in every kind of soil, and is said even to drive out the white clover, which is usually so powerful in taking possession of the soil.

In Australia another composite plant, called there the Cape-weed (Cryptostemma calendulaceum), did much damage, and was noticed by Baron Von Hugel in 1833 as "an unexterminable weed"; but, after forty years' occupation, it was found to give way to the dense herbage formed by lucerne and choice grasses.

In Ceylon we are told by Mr. Thwaites, in his Enumeration of Ceylon Plants, that a plant introduced into the island less than fifty years ago is helping to alter the character of the vegetation up to an elevation of 3000 feet. This is the Lantana mixta, a verbenaceous plant introduced from the West Indies, which appears to have found in Ceylon a soil and climate exactly suited to it. It now covers thousands of acres with its dense masses of foliage, taking complete possession of land where cultivation has been neglected or abandoned, preventing the growth of any other plants, and even destroying small trees, the tops of which its subscandent stems are able to reach. The fruit of this plant is so acceptable to frugivorous birds of all kinds that, through their instrumentality, it is spreading rapidly, to the complete exclusion of the indigenous vegetation where it becomes established.

Great Fertility not essential to Rapid Increase.

The not uncommon circumstance of slow-breeding animals being very numerous, shows that it is usually the amount of destruction which an animal or plant is exposed to, not its rapid multiplication, that determines its numbers in any country. The passenger-pigeon (Ectopistes migratorius) is, or rather was, excessively abundant in a certain area in North America, and its enormous migrating flocks darkening the sky for hours have often been described; yet this bird lays only two eggs. The fulmar petrel exists in myriads at St. Kilda and other haunts of the species, yet it lays only one egg. On the other hand the great shrike, the tree-creeper, the nut-hatch, the nut-cracker, the hoopoe, and many other birds, lay from four to six or seven eggs, and yet are never abundant. So in plants, the abundance of a species bears little or no relation to its seed-producing power. Some of the grasses and sedges, the wild hyacinth, and many buttercups occur in immense profusion over extensive areas, although each plant produces comparatively few seeds; while several species of bell-flowers, gentians, pinks, and mulleins, and even some of the compositae, which produce an abundance of minute seeds, many of which are easily scattered by the wind, are yet rare species that never spread beyond a very limited area.

The above-mentioned passenger-pigeon affords such an excellent example of an enormous bird-population kept up by a comparatively slow rate of increase, and in spite of its complete helplessness and the great destruction which it suffers from its numerous enemies, that the following account of one of its breeding-places and migrations by the celebrated American naturalist, Alexander Wilson, will be read with interest:—

"Not far from Shelbyville, in the State of Kentucky, about five years ago, there was one of these breeding-places, which stretched through the woods in nearly a north and south direction, was several miles in breadth, and was said to be upwards of 40 miles in extent. In this tract almost every tree was furnished with nests wherever the branches could accommodate them. The pigeons made their first appearance there about the 10th of April, and left it altogether with their young before the 25th of May. As soon as the young were fully grown and before they left the nests, numerous parties of the inhabitants from all parts of the adjacent country came with waggons, axes, beds, cooking utensils, many of them accompanied by the greater part of their families, and encamped for several days at this immense nursery. Several of them informed me that the noise was so great as to terrify their horses, and that it was difficult for one person to hear another without bawling in his ear. The ground was strewed with broken limbs of trees, eggs, and young squab pigeons, which had been precipitated from above, and on which herds of hogs were fattening. Hawks, buzzards, and eagles were sailing about in great numbers, and seizing the squabs from the nests at pleasure; while, from 20 feet upwards to the top of the trees, the view through the woods presented a perpetual tumult of crowding and fluttering multitudes of pigeons, their wings roaring like thunder, mingled with the frequent crash of falling timber; for now the axemen were at work cutting down those trees that seemed most crowded with nests, and contrived to fell them in such a manner, that in their descent they might bring down several others; by which means the falling of one large tree sometimes produced 200 squabs little inferior in size to the old birds, and almost one heap of fat. On some single trees upwards of a hundred nests were found, each containing one squab only; a circumstance in the history of the bird not generally known to naturalists.[8] It was dangerous to walk under these flying and fluttering millions, from the frequent fall of large branches, broken down by the weight of the multitudes above, and which in their descent often destroyed numbers of the birds themselves; while the clothes of those engaged in traversing the woods were completely covered with the excrements of the pigeons.

"These circumstances were related to me by many of the most respectable part of the community in that quarter, and were confirmed in part by what I myself witnessed. I passed for several miles through this same breeding-place, where every tree was spotted with nests, the remains of those above described. In many instances I counted upwards of ninety nests on a single tree; but the pigeons had abandoned this place for another, 60 or 80 miles off, towards Green River, where they were said at that time to be equally numerous. From the great numbers that were constantly passing over our heads to or from that quarter, I had no doubt of the truth of this statement. The mast had been chiefly consumed in Kentucky; and the pigeons, every morning a little before sunrise, set out for the Indiana territory, the nearest part of which was about sixty miles distant. Many of these returned before ten o'clock, and the great body generally appeared on their return a little after noon. I had left the public road to visit the remains of the breeding-place near Shelbyville, and was traversing the woods with my gun, on my way to Frankfort, when about ten o'clock the pigeons which I had observed flying the greater part of the morning northerly, began to return in such immense numbers as I never before had witnessed. Coming to an opening by the side of a creek, where I had a more uninterrupted view, I was astonished at their appearance: they were flying with great steadiness and rapidity, at a height beyond gunshot, in several strata deep, and so close together that, could shot have reached them, one discharge could not have failed to bring down several individuals. From right to left, as far as the eye could reach, the breadth of this vast procession extended, seeming everywhere equally crowded. Curious to determine how long this appearance would continue, I took out my watch to note the time, and sat down to observe them. It was then half-past one; I sat for more than an hour, but instead of a diminution of this prodigious procession, it seemed rather to increase, both in numbers and rapidity; and anxious to reach Frankfort before night, I rose and went on. About four o'clock in the afternoon I crossed Kentucky River, at the town of Frankfort, at which time the living torrent above my head seemed as numerous and as extensive as ever. Long after this I observed them in large bodies that continued to pass for six or eight minutes, and these again were followed by other detached bodies, all moving in the same south-east direction, till after six o'clock in the evening. The great breadth of front which this mighty multitude preserved would seem to intimate a corresponding breadth of their breeding-place, which, by several gentlemen who had lately passed through part of it, was stated to me at several miles."

From these various observations, Wilson calculated that the number of birds contained in the mass of pigeons which he saw on this occasion was at least two thousand millions, while this was only one of many similar aggregations known to exist in various parts of the United States. The picture here given of these defenceless birds, and their still more defenceless young, exposed to the attacks of numerous rapacious enemies, brings vividly before us one of the phases of the unceasing struggle for existence ever going on; but when we consider the slow rate of increase of these birds, and the enormous population they are nevertheless able to maintain, we must be convinced that in the case of the majority of birds which multiply far more rapidly, and yet are never able to attain such numbers, the struggle against their numerous enemies and against the adverse forces of nature must be even more severe or more continuous.

Struggle for Life between, closely allied Animals and Plants often the most severe.

The struggle we have hitherto been considering has been mainly that between an animal or plant and its direct enemies, whether these enemies are other animals which devour it, or the forces of nature which destroy it. But there is another kind of struggle often going on at the same time between closely related species, which almost always terminates in the destruction of one of them. As an example of what is meant, Darwin states that the recent increase of the missel-thrush in parts of Scotland has caused the decrease of the song-thrush.[12] The black rat (Mus rattus) was the common rat of Europe till, in the beginning of the eighteenth century, the large brown rat (Mus decumanus) appeared on the Lower Volga, and thence spread more or less rapidly till it overran all Europe, and generally drove out the black rat, which in most parts is now comparatively rare or quite extinct. This invading rat has now been carried by commerce all over the world, and in New Zealand has completely extirpated a native rat, which the Maoris allege they brought with them from their home in the Pacific; and in the same country a native fly is being supplanted by the European house-fly. In Russia the small Asiatic cockroach has driven away a larger native species; and in Australia the imported hive-bee is exterminating the small stingless native bee.

The reason why this kind of struggle goes on is apparent if we consider that the allied species fill nearly the same place in the economy of nature. They require nearly the same kind of food, are exposed to the same enemies and the same dangers. Hence, if one has ever so slight an advantage over the other in procuring food or in avoiding danger, in its rapidity of multiplication or its tenacity of life, it will increase more rapidly, and by that very fact will cause the other to decrease and often become altogether extinct. In some cases, no doubt, there is actual war between the two, the stronger killing the weaker; but this is by no means necessary, and there may be cases in which the weaker species, physically, may prevail, by its power of more rapid multiplication, its better withstanding vicissitudes of climates, or its greater cunning in escaping the attacks of the common enemies. The same principle is seen at work in the fact that certain mountain varieties of sheep will starve out other mountain varieties, so that the two cannot be kept together. In plants the same thing occurs. If several distinct varieties of wheat are sown together, and the mixed seed resown, some of the varieties which best suit the soil and climate, or are naturally the most fertile, will beat the others and so yield more seed, and will consequently in a few years supplant the other varieties. As an effect of this principle, we seldom find closely allied species of animals or plants living together, but often in distinct though adjacent districts where the conditions of life are somewhat different. Thus we may find cowslips (Primula veris) growing in a meadow, and primroses (P. vulgaris) in an adjoining wood, each in abundance, but not often intermingled. And for the same reason the old turf of a pasture or heath consists of a great variety of plants matted together, so much so that in a patch little more than a yard square Mr. Darwin found twenty distinct species, belonging to eighteen distinct genera and to eight natural orders, thus showing their extreme diversity of organisation. For the same reason a number of distinct grasses and clovers are sown in order to make a good lawn instead of any one species; and the quantity of hay produced has been found to be greater from a variety of very distinct grasses than from any one species of grass.

It may be thought that forests are an exception to this rule, since in the north-temperate and arctic regions we find extensive forests of pines or of oaks. But these are, after all, exceptional, and characterise those regions only where the climate is little favourable to forest vegetation. In the tropical and all the warm temperate parts of the earth, where there is a sufficient supply of moisture, the forests present the same variety of species as does the turf of our old pastures; and in the equatorial virgin forests there is so great a variety of forms, and they are so thoroughly intermingled, that the traveller often finds it difficult to discover a second specimen of any particular species which he has noticed. Even the forests of the temperate zones, in all favourable situations, exhibit a considerable variety of trees of distinct genera and families, and it is only when we approach the outskirts of forest vegetation, where either drought or winds or the severity of the winter is adverse to the existence of most trees, that we find extensive tracts monopolised by one or two species. Even Canada has more than sixty different forest trees and the Eastern United States a hundred and fifty; Europe is rather poor, containing about eighty trees only; while the forests of Eastern Asia, Japan, and Manchuria are exceedingly rich, about a hundred and seventy species being already known. And in all these countries the trees grow intermingled, so that in every extensive forest we have a considerable variety, as may be seen in the few remnants of our primitive woods in some parts of Epping Forest and the New Forest.

Among animals the same law prevails, though, owing to their constant movements and power of concealment, it is not so readily observed. As illustrations we may refer to the wolf, ranging over Europe and Northern Asia, while the jackal inhabits Southern Asia and Northern Africa; the tree-porcupines, of which there are two closely allied species, one inhabiting the eastern, the other the western half of North America; the common hare (Lepus timidus) in Central and Southern Europe, while all Northern Europe is inhabited by the variable hare (Lepus variabilis); the common jay (Garrulus glandarius) inhabiting all Europe, while another species (Garrulus Brandti) is found all across Asia from the Urals to Japan; and many species of birds in the Eastern United States are replaced by closely allied species in the west. Of course there are also numbers of closely related species in the same country, but it will almost always be found that they frequent different stations and have somewhat different habits, and so do not come into direct competition with each other; just as closely allied plants may inhabit the same districts, when one prefers meadows the other woods, one a chalky soil the other sand, one a damp situation the other a dry one. With plants, fixed as they are to the earth, we easily note these peculiarities of station; but with wild animals, which we see only on rare occasions, it requires close and long-continued observation to detect the peculiarities in their mode of life which may prevent all direct competition between closely allied species dwelling in the same area.

The Ethical Aspect of the Struggle for Existence.

Our exposition of the phenomena presented by the struggle for existence may be fitly concluded by a few remarks on its ethical aspect. Now that the war of nature is better known, it has been dwelt upon by many writers as presenting so vast an amount of cruelty and pain as to be revolting to our instincts of humanity, while it has proved a stumbling-block in the way of those who would fain believe in an all-wise and benevolent ruler of the universe. Thus, a brilliant writer says: "Pain, grief, disease, and death, are these the inventions of a loving God? That no animal shall rise to excellence except by being fatal to the life of others, is this the law of a kind Creator? It is useless to say that pain has its benevolence, that massacre has its mercy. Why is it so ordained that bad should be the raw material of good? Pain is not the less pain because it is useful; murder is not less murder because it is conducive to development. Here is blood upon the hand still, and all the perfumes of Arabia will not sweeten it."[9]

Even so thoughtful a writer as Professor Huxley adopts similar views. In a recent article on "The Struggle for Existence" he speaks of the myriads of generations of herbivorous animals which "have been tormented and devoured by carnivores"; of the carnivores and herbivores alike "subject to all the miseries incidental to old age, disease, and over-multiplication"; and of the "more or less enduring suffering," which is the meed of both vanquished and victor. And he concludes that, since thousands of times a minute, were our ears sharp enough, we should hear sighs and groans of pain like those heard by Dante at the gate of hell, the world cannot be governed by what we call benevolence.[10]

Now there is, I think, good reason to believe that all this is greatly exaggerated; that the supposed "torments" and "miseries" of animals have little real existence, but are the reflection of the imagined sensations of cultivated men and women in similar circumstances; and that the amount of actual suffering caused by the struggle for existence among animals is altogether insignificant. Let us, therefore, endeavour to ascertain what are the real facts on which these tremendous accusations are founded.

In the first place, we must remember that animals are entirely spared the pain we suffer in the anticipation of death—a pain far greater, in most cases, than the reality. This leads, probably, to an almost perpetual enjoyment of their lives; since their constant watchfulness against danger, and even their actual flight from an enemy, will be the enjoyable enjoyable exercise of the powers and faculties they possess, unmixed with any serious dread. There is, in the next place, much evidence to show that violent deaths, if not too prolonged, are painless and easy; even in the case of man, whose nervous system is in all probability much more susceptible to pain than that of most animals. In all cases in which persons have escaped after being seized by a lion or tiger, they declare that they suffered little or no pain, physical or mental. A well-known instance is that of Livingstone, who thus describes his sensations when seized by a lion: "Starting and looking half round, I saw the lion just in the act of springing on me. I was upon a little height; he caught my shoulder as he sprang, and we both came to the ground below together. Growling horribly close to my ear, he shook me as a terrier-dog does a rat. The shock produced a stupor similar to that which seems to be felt by a mouse after the first shake of the cat. It causes a sort of dreaminess, in which there was no sense of pain or feeling of terror, though I was quite conscious of all that was happening. It was like what patients partially under the influence of chloroform describe, who see all the operation, but feel not the knife. This singular condition was not the result of any mental process. The shake annihilated fear, and allowed no sense of horror in looking round at the beast."

This absence of pain is not peculiar to those seized by wild beasts, but is equally produced by any accident which causes a general shock to the system. Mr. Whymper describes an accident to himself during one of his preliminary explorations of the Matterhorn, when he fell several hundred feet, bounding from rock to rock, till fortunately embedded in a snow-drift near the edge of a tremendous precipice. He declares that while falling and feeling blow after blow, he neither lost consciousness nor suffered pain, merely thinking, calmly, that a few more blows would finish him. We have therefore a right to conclude, that when death follows soon after any great shock it is as easy and painless a death as possible; and this is certainly what happens when an animal is seized by a beast of prey. For the enemy is one which hunts for food, not for pleasure or excitement; and it is doubtful whether any carnivorous animal in a state of nature begins to seek after prey till driven to do so by hunger. When an animal is caught, therefore, it is very soon devoured, and thus the first shock is followed by an almost painless death. Neither do those which die of cold or hunger suffer much. Cold is generally severest at night and has a tendency to produce sleep and painless extinction. Hunger, on the other hand, is hardly felt during periods of excitement, and when food is scarce the excitement of seeking for it is at its greatest. It is probable, also, that when hunger presses, most animals will devour anything to stay their hunger, and will die of gradual exhaustion and weakness not necessarily painful, if they do not fall an earlier prey to some enemy or to cold.[11]

Now let us consider what are the enjoyments of the lives of most animals. As a rule they come into existence at a time of year when food is most plentiful and the climate most suitable, that is in the spring of the temperate zone and at the commencement of the dry season in the tropics. They grow vigorously, being supplied with abundance of food; and when they reach maturity their lives are a continual round of healthy excitement and exercise, alternating with complete repose. The daily search for the daily food employs all their faculties and exercises every organ of their bodies, while this exercise leads to the satisfaction of all their physical needs. In our own case, we can give no more perfect definition of happiness, than this exercise and this satisfaction; and we must therefore conclude that animals, as a rule, enjoy all the happiness of which they are capable. And this normal state of happiness is not alloyed, as with us, by long periods—whole lives often—of poverty or ill-health, and of the unsatisfied longing for pleasures which others enjoy but to which we cannot attain. Illness, and what answers to poverty in animals—continued hunger—are quickly followed by unanticipated and almost painless extinction. Where we err is, in giving to animals feelings and emotions which they do not possess. To us the very sight of blood and of torn or mangled limbs is painful, while the idea of the suffering implied by it is heartrending. We have a horror of all violent and sudden death, because we think of the life full of promise cut short, of hopes and expectations unfulfilled, and of the grief of mourning relatives. But all this is quite out of place in the case of animals, for whom a violent and a sudden death is in every way the best. Thus the poet's picture of

"Nature red in tooth and claw
With ravine"

is a picture the evil of which is read into it by our imaginations, the reality being made up of full and happy lives, usually terminated by the quickest and least painful of deaths.

On the whole, then, we conclude that the popular idea of the struggle for existence entailing misery and pain on the animal world is the very reverse of the truth. What it really brings about, is, the maximum of life and of the enjoyment of life with the minimum of suffering and pain. Given the necessity of death and reproduction—and without these there could have been no progressive development of the organic world,—and it is difficult even to imagine a system by which a greater balance of happiness could have been secured. And this view was evidently that of Darwin himself, who thus concludes his chapter on the struggle for existence: "When we reflect on this struggle, we may console ourselves with the full belief that the war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the vigorous, the healthy, and the happy survive and multiply."


  1. Géographic Botanique, p. 798.
  2. The Origin of Species, p.53.
  3. The Earth as Modified by Human Action, p.51
  4. The Origin of Species, p.56.
  5. See Nature, vol xxxi, p. 63.
  6. A Visit to South America, 1878; also Nature, vol. xxxi. pp. 263-339.
  7. Still more remarkable is the increase of rabbits both in New Zealand and Australia. No less than seven millions of rabbit-skins have been exported from the former country in a single year, their value being £67,000. In both countries, sheep-runs have been greatly deteriorated in value by the abundance of rabbits, which destroy the herbage; and in some cases they have had to be abandoned altogether.
  8. Later observers have proved that two eggs are laid and usually two young produced, but it may be that in most cases only one of these comes to maturity.
  9. Winwood Reade's Martyrdom of Man, p. 520.
  10. Nineteenth Century, February 1888, pp. 162, 163
  11. The Kestrel, which usually feeds on mice, birds, and frogs, sometimes stays its hunger with earthworms, as do some of the American buzzards. The Honey-buzzard sometimes eats not only earthworms and slugs, but even corn; and the Buteo borealis of North America, whose usual food is small mammals and birds, sometimes eats crayfish.