Translation:Overview of Industrial Testing Outcome of Respiratory Organs Personal Protection Equipment

From Wikisource
Jump to navigation Jump to search
The Overview of Industrial Testing Outcome of Respiratory Organs Personal Protection Equipment (2014)
Kirillov VF, Filin AS, Chirkin AV, translated from Russian by Wikisource

The scientific article in the journal "Toxicological Review" (RF) No 6 (2014), p. 44-49 ISSN 0869-7922, DOI: 10.17686/sced_rusnauka_2014-1034

1804919The Overview of Industrial Testing Outcome of Respiratory Organs Personal Protection Equipment2014Kirillov VF, Filin AS, Chirkin AV

State Budgetary Educational Institution of Higher Professional Education «I.M. Sechenov Moscow State Medical University», 119991 Moscow, RF


Abstract: The article presents information about studies that had been performed to assess the effectiveness of personal respiratory protection (RPD) in the workplace environment for the last 45 years. These data necessitate a revision of fundamental provisions of the respirators selection depending on a known degree of air pollution in the breathing zone.


Key words: respirator, RPD (Respiratory Protective Devices), the Protection Factor, personal sampler, harmful gases and aerosols.


In the workplace, in those cases where it is impossible to apply the technological, technical and sanitary preventive measures (or their low efficiency) [59] for the protection of workers from harmful substances in workplace air in concentrations exceeding the PEL, use RPE. To adequately protect people working in hazardous conditions, requires information on the effectiveness of respiratory protective equipment of various types (designs). In RF, the employer can get it from the state standards (GOST) (which define the quality requirements for certified RPE), directory of manufacturers and publications in the technical literature, in which the coefficients are specified protection respirators different designs.


It is important to emphasize that the choice of appropriate respiratory protective equipment in Russia use protection factors (PF - the ratio of the concentration of contaminants outside the mask of concentration under the mask), obtained from the certification tests in the laboratory. This approach has been generally accepted in the developed countries about 30 years ago. However, the identification of cases of occupational diseases with the correct selection and use of the serviceable respirators, convinced specialists less RPE efficiency in industrial environments with respect to efficiency in the laboratory [15]. This prompted for more research to determine the PF of respirators not only in the laboratory but also in the production environment.


Table 1 presents a brief description of a number of studies carried out to determine the coefficients of protection RPE in the workplace.


Table 1. Brief description of the research that was conducted to determine the protection coefficients of respirators in the workplace
Source1, year of publication Kind of PF Harmful substance; (nature and / or place of work); RPD Number of
participants measurements
[29] 1974 E2 Coal dust; mine; 5 half-mask respirators 37 187
[62] 1974 E2 Cotton dust; textile factory; 3 half-mask respirators 5 16
[64 1975 E2 The dust of silicon dioxide; sandblasting; helmet with an air supply5 N6 N6
[50] 1976 W3 Sulfur dioxide; copper smelting; 3 elastomeric half-mask respirators N6 76
[48] 1979 B4 Carbon monoxide; fire fighting; MSA breathing apparatus >26 519
[10] 1980 - Styrene; disposable half-mask respirators 4 16
[66] 1980 E2 Cadmium dust; production of cadmium and paint; half-mask respirators 9 27
[51] 1983 E2 Quartz dust; packing quartz; RPD with an air supply5 4 11
[65] 1983 E2 Lead; smelting of brass; respirator with an air supply5 7 16
[42] 1984 W3 Lead; production of lead; half masks with and without an air supply5 25 50
[21] 1984 W3 Aluminum dust, oxide fluorides; production of aluminum; 3 half-masks 60 75
[52] 1984 W3 Lead; melting and casting of ingots; helmets with an air supply5 12 23
[13] 1984 W3 Mercury; chlorine production, maintenance of equipment, disposable half-mask respirator 7 26
[18] 1984 W3 Aerosol of lead; elastomeric half-mask respirators 11 37
[20]2 1985 W3 Asbestos; removal of insulation from pipes and fire-retardant ceiling; half-mask respirators 17 84
[26] 1986 B4,E2 Lead; hood with air supply and filtering facepice 13 19
[39] 1986 E2 Solvents; different cleaning; 3 elastomeric half-mask respirators 6 23
[55] 1986 W3 Aerosol of lead; production of batteries, helmets with an air supply5 12 47
[20]5 1986 W3 Asbestos; production of brakes; helmet with an air supply5 5 9
[61] 1987 W3 Dust; production of dry mixtures; filtering facepice 7 19
[70] 1987 B4 Organic substances; removal of paint; full facepiece masks 8 47
[20]16 1987 W3 Aluminium, titanium & silicon; grinding and polishing; filtering facepice 3 >9
[20]28 1987 W3 Silicon; shipbuilding; airline respirator with an air supply5 4 15
[7] 1989 PF Asbestos; removal of insulation; helmet with an air supply5 N6 N6
[20] 1989 W3 Lead; smelting of lead; full facepiece masks 13 20
[20]20 1989 W3 Iron and silicon; abrasive machining of castings; airline respirator with an air supply5 N6 39
[69] 1990 W3 Asbestos; stripping; 3 full facepiece masks ~6 ~36
[24] 1990 W3 Styrene; manufacture of products made of fiberglass; half-masks 13 63
[20]14 1990 W3 Dust of aluminum; production of aluminum; filtering facepiece 5 23
[20]15 1990 W3 Lead and zinc; cast brass; filtering facepiece 17 62
[20]18 1990 W3 Lead; production of lead; full facepiese respirators with an air supply5 20 55
[20]27 1990 W3 Steroid in pharmaceutical company; helmets with an air supply5 N6 60
[30] 1991 КЗ Lead chromate, cadmium sulfide; production of dyes; 3 half-masks 11 44
[27] 1992 E2 Dust with radioactive components; half-mask respirators 23 27
[20] 1992 W3 Iron, manganese, titanium and zinc; welding and abrasive preparations; shipbuilding; filtering facepieces N6 32
[23] 1993 W3 Benzo(a)pyrene; 3 elastomeric half-mask respirator and respirator with an air supply5 22 38
[46] 1993 B4, E2 Styrene; shipyard; elastomeric half-mask and supplying air respirators 10 10
[11] 1993 B4 Lead; manufacture of acid batteries; filtering facepiece 85 N6
[71] 1993 W3 Manganese dioxide; manufacture of batteries; filtering facepiece >12 70
[20]19 1992 W3 Quartz; the dismantling of the oven; airline respirator with an air supply5 4 37
[31] 1993-4 W3 Manufacturing of paints, batteries, flame retardants, smelting of lead; filtering and elastomeric half-mask 30 180
[20]1B 1994 П3 Lead, cutting ships; cadmium dust, paint production; half-masks 36 N6
[67] 1995 E2 Dust, endotoxins; agricultural farms; RPD with and without air supply5 221 N6
[75] 1996 W3 Dust titanium and chromium; painting of aircraft; 3 elastomeric half-masks 22 36
[54] 1996 W3 Zinc and lead; foundry; elastomeric and filtering half masks 26 66
[14] 1996 B4 Lead; removing of old paint; respirators with an air supply5 22 N6
[63] 1998 W3 Asbestos; removal of insulation; respirators with an air supply5 N6 32
[53] 1998 W3 The dust of iron and calcium; steel plant; elastomeric and filtering half masks 17 54
[47] 1999 B4, E2 Styrene; manufacture of ships; respirators with an air supply5 4 N6
[8] 1999 W3 Filling powder fire extinguishers; measured penetration SF6 gas; a full-face mask 15 15
[25] 2000 B4, E2 Styrene; elastomeric half mask 7 N6
[68] 2000 E2 Lead; metallurgical plant; half masks with and without an air supply5 N6 99
[72] 2000 W3 Styrene; shipbuilding; elastomeric half mask 19 46
[28] 2000 E2 Manganese; manufacture of batteries; filtering facepiece ~8 15
[58] 2001 W3 Strontium dust; sanding and primer; respirator with an air supply5 19 37
[20]26 2001 W3 Cadmium; manufacture of Nickel-cadmium batteries; hood with an air supply5 7 33
[73] 2002 E2 Benzo(a)pyrene; coke oven; elastomeric half-mask 9 27
[19] 2002 W3 Welding fumes; shipbuilding; 3 filtering facepieces 14 42
[74] 2003 W3 Dust of compounds of iron; steel plant; 2 elastomeric half-mask 15 55
[9] 2004 W3 Cement dust; manufacture of concrete products; filtering facepiece 15 74
[41] 2005 W3 The dust generated by agricultural harvester; filtering facepiece 1 ~30
[40] 2005 W3 Dust, fungi and microbes; agricultural farms; 2 filtering facepieces 21 N6
[32] 2007 W3 Lead; lead production; a full-face mask 18 52
[22] 2007 B4, E2 Xylene and ethylbenzene; painting of ships; elastomeric half-masks 18 49
[35] 2007 W3 Dust of compounds of iron; steel plant; half mask respirator 12 49
[34] 2007 W3 The dust of magnesium and aluminum; machining; filtering half mask 5 53
[33] 2008 W3 Dust strontium and manganese; grinding of an aircraft; respirators with an air supply5 5 ~5
[36] 2009 W3 Lead, production of acid batteries; elastomeric half mask respirator 10 45
[38] 2010 W3 Dust; various agricultural works; filtering and elastomeric half-mask 22 N6
[17] 2012 E2 Aerosol of polycyclic aromatic hydrocarbons; coke production; helmet with an air supply5 N6 N6
Effective PF 18 studies >381 participants >526 measurements
Workplace PF 45 studies >569 participants >1853 measurements
Biomonitoring 9 studies >193 participants >644 measurements
Total (1974-2012): 70 available studies; > 1141 participants; > 3061 measurements.

1 – The subscript corresponds to the number of that study, which is described in detail in the review [20]. The list of studies: - the index in the table (page source); authors /source (date).

- 1B (page 34051); C. Coulton, H. Mullins and J. Bidwell / Report at: American Industrial Hygiene Conference and Exposition (AIHCE) (1994).
- 1C (p. 34051); C. Coulton and H. Mullins / Report at conference: AIHCE (1992).
- 2 (p. 34052); T. Nelson and S. Dixon / Report at conference: AIHCE (1985).
- 2A (p. 34058); C. Colton, A. Johnston et al / Report at conference: AIHCE (1989).
- 5 (p. 34062); W. Albrecht, G. Carter et al / Report at conference: AIHCE (1986).
- 14 (p. 34057); C. Colton, A.R. Johnston et al / Report at conference: AIHCE (1990).
- 15 (p. 34057); C. Colton, H. Mullins & C. Rhoe / Report at conference: AIHCE (1990).
- 16 (p. 34058); A. Johnston and H. Mullins / Report at conference: AIHCE (1987).
- 18 (p. 34061); C. Colton and H. Mullins / Report at conference: AIHCE (1990).
- 19 (p. 34066); C. Colton, H. Mullins, & Bidwell / Report at conference: AIHCE (1992).
- 20 (p. 34065); A. Johnston, C. Colton et al / Report at conference: AIHCE (1989).
- 26 (p. 34064); D.V. Collia, et al. / Report at conference: AIHCE (2001).
- 27 (p. 34061); D. Keys, H. Guy and M. Axon / Report at conference: AIHCE (1990).
- 28 (p. 34065); A. Johnston, D. Stokes et al / Report at conference: AIHCE (1987).

2 - E (Effective protection coefficient, effective PF) is the protection factor of the respirator, which is measured in the workplace during the period of work without regard to employee uses a respirator all the time , or does not use a respirator all their working time.

3 - W (protection factor in the workplace, Workplace PF) - protection factor of the respirator, as measured in the workplace only in those periods of time when respiratory protective equipment is used continuously.

4 - B (Biomonitoring) - to determine the effectiveness of respirators experts compare the content of harmful substances or products of their decomposition in the blood, urine, etc people who used respirators and people not exposed to the harmful effects.

5 - a respirator with an air supply under the mask - not negative presure respirator.

6 - N (unknown) - no information


To conduct a systematic scientific measurement and estimation of results was developed related terminology [43-45], formalized in [49]; and carried out statistical processing of results of measurements ([60], etc.).

Measurements of the coefficients of the protection of respirators in the workplace showed that the effectiveness of respirators may be significantly reduced due to the leakage of unfiltered air under the mask through the gaps between it and the face. Gaps can occur because of insufficient proper selection and use of masks and mask slipping during operation.

Table 2 shows the differences in performance requirements to RPD most common types of certification in the laboratory, and the tightening limit the scope of their permitted use (MUC, APF), which occurred due to the discovery of a significant leakage of contaminated air through the gaps during the measurements in the workplace.

Table 2. Comparison of requirements for RPD different designs during their certification and minimum measured PF in the workplace; and the tightening of restrictions permitted area of use that have occurred on the basis of the measurement results of Workplace Protection Factors.
Type of RPD, country Protection factors Limit the scope of application
Requirements for certification, or Nominal PF (2013) The minimum protection factors of respirators, measured in the workplace Old limitations (year) (2013)
Full face mask, USA ≥ 250 0001 11,17 … [69] ≤ 100 PEL (1980)3 ≤ 50 PEL4
Full face mask, UK ≥2000 (gas)2 or ≥ 1000 (aerosol)2 ≤ 900 PEL (1980) [69] ≤ 40 PEL
A half-mask, USA ≥ 25 0001 2.2, 2.8, 4 … ≤ 10 PEL from 19654,5
Helmet with forced air supply, USA ≥ 250 0001 23, 28 … ≤ 1000 PEL (1992)3 ≤ 25 PEL4
Breathing apparatus with air supply on demand, USA ≥ 250 0001 biomonitoring showed low efficiency ≤ 100 PEL (1992)3 ≤ 50 PEL4
  1. 42 Code of Federal Register Part 84 Respiratory Protective Devices
  2. BS EH 136:1998 Full face masks. Requirements, testing, marking.
  3. ANSI Z88.2 “Respiratory protection” (1980 and 1992).
  4. US Standard 29 CFR 1910.134 ”Respiratory protection”
  5. Bureau of Mines “Respirator Approval Schedule 21B” 1965

The studies have shown that the efficiency of the respiratory protective equipment in the workplace depends on : their design; the degree of training workers to use respirators; fit of the mask to the face; the mobility of the employee during operation; microclimatic conditions and other factors. For example, at an elevated temperature due to non-continuous application of high-efficiency respirators effect from their application could be missing (PF = 1.1; 1.2 [73], etc.). The risk of significant and unpredictable reduce the protective properties of common negative pressure respirators prompted to prohibit the use of such respirators (without constant positive pressure under the mask) when levels of air pollutio is, immediately dangerous to life and health IDLH (when short-term exposure can lead to acute poisoning, irreversible damage to the health and/or prevent evacuation, for example - because of the impact on the eye). The values of these concentrations in the RF is not installed, and it hurt to use the conventional methods of selection of respirators.

The results of the few RF studies evaluating the effectiveness of respiratory protective equipment at the workplace, or do not take into account the difference in the leakage of gas and aerosol [1,4], or substantially consistent with the results of foreign studies [2,3,5,6]. But they are not reflected in the sanitary and legislative documents of the RF, and selection of respirators in enterprises is not regulated by the state now.


Conclusions

  1. It is necessary to develop selection criteria and requirements for the use of RPD, with the introduction of their substantive provisions in the sanitary legislation.
  2. Such criteria should take into account the discrepancy of the declared coefficients of protection actually afforded to workers.
  3. The existing RF system of certification of respirators do not provide effective protection of workers.


References

  1. Вихлянцев А.В, Каминский С.Л. и др. Газопылезащитные респираторы Лепесток-В для работников цветной металлургии // Развитие техники безопасности и производственной санитарии. Сборник научных работ институтов охраны труда ВЦСПС, М.: Профиздат, 1987. - С. 68-71
  2. Воробъёв В.А. Индивидуальное защитное приспособление "Экран-1м" // Вопросы ремонта и использования сельскохозяйственной техники. Труды кубанского сельскохозяйственного института. Краснодар: КубСХИ, 1974. Том 82(110). - С. 17-22.
  3. Гаврищук В.И, Тюриков Б.М. Защита органов дыхания при работе с минеральными удобрениями // Пути ускорения нормализации условий труда работников сельского хозяйства Сб. трудов Орел: ВНИИОТ ГАП СССР, 1988.- С. 116-121.
  4. Никифоров И.Н., С.Л. Каминский и др. Результаты испытаний фильтрующих респираторов модели Снежок // Гл. ред. Цуцков М.Е. Комплексные проблемы охраны труда. Сборник научных работ институтов охраны труда ВЦСПС, М.: Профиздат, 1979. - С. 104-108.
  5. Тюриков Б.М., Гаврищук В.Ф. Исследование средств индивидуальной защиты органов дыхания для работников кормопроизводства // Сб. науч. трудов: Безопасность труда в животноводстве. Орёл: ВНИИ охраны труда в сельском хозяйстве, 1983. - С. 86-90.
  6. Хохлов Е.Н., Э.А. Смородин, Л.А. Миронов, И.Д. Синицына Средства индивидуальной защиты от хлористого метилена // Технология судостроения. Ленинград: ЦНИИ Румб, 1979, выпуск 7. - С. 92-94.
  7. Akkersdijk H., C. Bremmer, C. Schliszka & T. Spee // The Annals of Occupational Hygiene 1989, Vol. 33, N 1, p. 113-116
  8. Bancroft B., M.P. Clayton, P.G. Evans, A.S. Hughes. // Journal of the International Society for Respiratory Protection 1999, Vol 17, N 2, p. 24-54.
  9. Bidwell J. and L. Janssen // Journal of the International Society for Respiratory Protection 2004, Vol. 21, N 3-4, р. 94-102.
  10. Brooks S. M., L. Anderson et al. // Archives of Environmental Health: An International Journal 1980, Vol. 35, N 5, p. 287-294
  11. Byung-Kook Lee, Choong-Won Lee, Kyu-Dong Ahn // International Archives of Occupational and Environmental Health 1993, Vol. 65, N 1, p. S181-S184.
  12. Clayton M.P., B. Bancroft and B. Rajan // The Annals of Occupational Hygiene 2002, Vol. 46, N 6, p. 537-547.
  13. Cohen H.J. // Journal of the International Society for Respiratory Protection 1984, Vol 2, N 3, p. 296-304.
  14. Conroy L.M., R.M. Menezes-Lindsay et al. // Archives of Environmental Health: An International Journal 1996, Vol 51, N 2, p. 95-99.
  15. Cralley L.V., Cralley L.J. Patty's Industrial Hygiene and Toxicology, Second Edition, Vol. 3 Part A. New York.: Willey-Interscience, 1985. - C 677-678.
  16. Cramp K.S. // Journal of Occupational and Environmental Hygiene 2007, Vol. 4, N 3, р. 208–214.
  17. Crawford J.O, K. Dixon, B.G. Miller and J.W. Cherrie. A review of the effectiveness of respirators in reducing exposure to polycyclic aromatic hydrocarbons for coke oven workers. Institute of Occupational Medicine Research Report TM/12/01, Edinburgh, 2012 www.academia.edu
  18. Dixon S.W. and T.J. Nelson // Journal of the International Society for Respiratory Protection 1984, Vol 2, N 4, p. 347-360.
  19. Don-Hee Han // Industrial Health 2002, Vol. 40, N 4, р. 328–334.
  20. Federal Register Vol. 68, No. 109 / Friday, June 6, 2003. Proposed Rules. Assigned Protection Factors. pp. 34036-34119 http://www.rushingmarine.com/regulations/29CFR1910,15,26_06.06.03.pdf
  21. Fergin S. // American Industrial Hygiene Association Journal 1984, Vol. 45, N 8, p. 533-537.
  22. Fu-Kuei Chang, Mei-Lien Chen et al. // International Archives of Occupational and Environmental Health 2007, Vol. 81, N 2, p. 145-150.
  23. Gaboury A., Burd D.H. and Friar R.S // Applied Occupational and Environmental Hygiene 1993, Vol. 8, N 1, p. 19-25.
  24. Galvin K., S. Selvin and R. Spear // American Industrial Hygiene Association Journal 1990, Vol. 51, N 12, p. 625-631.
  25. Gobba F., S. Ghittori, M. Imbriani, A. Cavalleri // International Archives of Occupational and Environmental Health 2000, Vol. 73, N 1, p. 56-60.
  26. Grauvogel Lawrence // American Industrial Hygiene Association Journal 1986, Vol. 47, N 2, p. 144-146.
  27. Gregory Hewson & Martin Ralpf // American Industrial Hygiene Association Journal 1992, Vol. 53, N 11, p. 713-720.
  28. Hanley K.W. and S.W. Lenhart // Applied Occupational and Environmental Hygiene 2000, Vol. 15, N 7, p. 542-549.
  29. Harris H.E., W.C. DeSieghardt et al. // American Industrial Hygiene Association Journal 1974, Vol. 35, N 3, p. 159-164.
  30. Hery M., Mario Villa et al. // The Annals of Occupational Hygiene 1991, Vol. 35, N 2, p. 181-187.
  31. Hery M. et al. // Journal of the International Society for Respiratory Protection 1993-1994, Vol 11, N 3, p. 15-39.
  32. Janssen L. and J. Bidwell // Journal of Occupational and Environmental Hygiene 2007, Vol. 4, N 2, р. 123–128.
  33. Janssen L., Bidwell J. et al. // Journal of Occupational and Environmental Hygiene 2008, Vol. 5, N 7, р. 438–443.
  34. Janssen L. and T.J. Nelson // Journal of the International Society for Respiratory Protection 2007, Vol. 24, N 1-2, р. 21-30
  35. Janssen L., T.J. Nelson, Karen T. Cuta // Journal of Occupational and Environmental Hygiene 2007, Vol. 4, N 9, р. 698–707.
  36. Janssen L., Nicole V. McCullough // Journal of Occupational and Environmental Hygiene 2009, Vol. 7, N 1, р. 46–53.
  37. Johnson A.R., W.R. Myers et al. // American Industrial Hygiene Association Journal 1992, Vol. 53, N 11, p. 705-712.
  38. Kyungmin Jacob Cho, S. Jones et al. // Journal of Occupational and Environmental Hygiene 2010, Vol. 7, N 11, р. 622–627.
  39. Larsen R.S. // American Industrial Hygiene Association Journal 1986, Vol. 47, N 12, p. A775-6.
  40. Lee Shu-An, Atin Adhikari et al. // Journal of Occupational and Environmental Hygiene 2005, Vol. 2, N 11, р. 577–585.
  41. Lee Shu-An, S.A. Grinshpun et al. // The Annals of Occupational Hygiene 2005, Vol. 49, N 3, p. 245-257.
  42. Lenhart S.W. and D.L. Campbell // The Annals of Occupational Hygiene 1984, Vol. 28, N 2, p. 173-182.
  43. Letter to the Editor // American Industrial Hygiene Association Journal 1982, Vol. 43, N 12, p. A-16.
  44. Letter to the Editor // American Industrial Hygiene Association Journal 1983, Vol. 44, N 3, p. B24-26.
  45. Letter to the Editor (respirator performance terminology) // American Industrial Hygiene Association Journal 1985, Vol. 46, N 5, p. В22-24
  46. Lif A., C. Brohede et al. // International Archives of Occupational and Environmental Health 1993, Vol. 65, N 1, p. 29-34.
  47. Limasset J.C., P. Simon et al. // International Archives of Occupational and Environmental Health 1999, Vol. 72, N 1, p. 46-51
  48. Marshal S. Levin // American Industrial Hygiene Association Journal 1979. Vol. 40, N 9, p. 832-834.
  49. Miller J.D. NIOSH Respirator Decision Logic. Cincinnati, Ohio: DNNS (NIOSH), 1987.
  50. Moore D.E., Smith T.J. // American Industrial Hygiene Association Journal 1976, Vol. 37, N 8, p. 453-458.
  51. Myers W.R., M.J. Peach III // The Annals of Occupational Hygiene 1983, Vol. 27, N 3, p. 251-259.
  52. Myers W.R., M.J. Peach et al. // American Industrial Hygiene Association Journal 1984, Vol. 45, N 10, p. 681-688.
  53. Myers W.R. and Z. Zhuang // American Industrial Hygiene Association Journal 1998, Vol. 59, N 11, p. 789-795.
  54. Myers W.R., Z. Zhuang, T. Nelson // American Industrial Hygiene Association Journal 1996, Vol. 57, N 2, p. 166-174.
  55. Myers W. R., Michael J. Peach III, K. Cutright and W. Iskander // Journal of the International Society for Respiratory Protection 1986, Vol. 4, N 1, р. 62-89.
  56. Nelson T.J. // American Industrial Hygiene Association Journal 1995, Vol. 56, N 7, p. 717-724.
  57. Nelson T.J. // American Industrial Hygiene Association Journal 1996, Vol. 57, N 8, p. 735-740.
  58. Nelson T.J., T.H. Wheeler, T.S. Mustard // American Industrial Hygiene Association Journal 2001, Vol. 62, N 1, p. 96-99.
  59. Nelson A. Leidel, K.A. Busch and J.R. Lynch NIOSH Occupational Exposure Sampling Strategy Manual, Appendix C DHHS (NIOSH) Publication Number 77-173, Cincinnati, OH, http://www.cdc.gov/niosh/docs/77-173/
  60. Nicas M. and Neuhaus J. // Journal of Occupational and Environmental Hygiene 2004, Vol. 1, N 2, р. 99–109.
  61. Reed L.D., Lenhart S.W. et al. // Applied Industrial Hygiene 1987, Vol. 2, N 2, p. 53-56.
  62. Revoir W.H. // American Industrial Hygiene Association Journal 1974, Vol. 35, N 8, p. 503-510.
  63. Riitta E.E. Riala and H.M. Riipinen // Applied Occupational and Environmental Hygiene 1998, Vol. 13, N 1, p. 32-40.
  64. Samimi Behzad, Neilson A. et al. // American Industrial Hygiene Association Journal 1975, Vol. 36, N 2, p. 140-148.
  65. Shane S. Que Hee; P. Lawrence // American Industrial Hygiene Association Journal 1983, Vol. 44, N 10, p. 746-751.
  66. Smith T.J., W.C. Ferrel et al. // American Industrial Hygiene Association Journal 1980, Vol. 41, N 9, p. 624-629.
  67. Spear T.M., J. DuMond et al. // Applied Occupational and Environmental Hygiene 1995, Vol. 10 N 7 р. 595-605.
  68. Spear T.M., J. DuMond et al. // Applied Occupational and Environmental Hygiene 2000, Vol. 15, N 2, p. 235-244.
  69. Tannahill S.N., R.J. Willey and M.H. Jackson // The Annals of Occupational Hygiene 1990, Vol. 34, N 6, p. 541-552.
  70. Tchorz K. ORSA Tubes Worn Inside Face Masks: A Simple Means of Checking the Effectiveness of protective Filter Masks. In: Diffusive Sampling, ed. by Berlin et al. 1987, p. 419-422.
  71. Wallis G., Menke R., Chelton C. // American Industrial Hygiene Association Journal 1993, Vol. 54, N 10, p. 576-583.
  72. Weber R.A., H.E. Mullins // American Industrial Hygiene Association Journal 2000, Vol. 61, N 3, p. 415-421.
  73. Wu Ming-Tsang // American Industrial Hygiene Association Journal 2002, Vol. 63, N 1, p. 72-75.
  74. Zhuang Z., C. Coffey et al. // American Industrial Hygiene Association Journal 2003, Vol. 64, N 6, p. 730-738.
  75. Zhuang Z., W.R. Myers // American Industrial Hygiene Association Journal 1996, Vol. 57, N 1, p. 50-57.


 This work is a translation and has a separate copyright status to the applicable copyright protections of the original content.

Original:

This work is free and may be used by anyone for any purpose. If you wish to use this content, you do not need to request permission as long as you follow any licensing requirements mentioned on this page.

Wikimedia has received an e-mail confirming that the copyright holder has approved publication under the terms mentioned on this page. This correspondence has been reviewed by an OTRS member and stored in our permission archive. The correspondence is available to trusted volunteers here.

Public domainPublic domainfalsefalse

Translation:

This work is licensed under the terms of the GNU Free Documentation License.

The Terms of use of the Wikimedia Foundation require that GFDL-licensed text imported after November 2008 must also be dual-licensed with another compatible license. "Content available only under GFDL is not permissible" (§7.4). This does not apply to non-text media.

Public domainPublic domainfalsefalse