Page:De Raum Zeit Minkowski 022.jpg

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

— 13 —

that the world-line of a second point-electron passes through the world-point . Let us determine P, Q, r as before, construct the middle-point of the hyperbola of curvature at P, and finally the normal MN from M upon a line through P which is parallel to . With P as the initial point, we shall establish a system of reference in the following way: the t-axis will be laid along PQ, the x-axis in the direction of ; the y-axis in the direction of MN, then the direction of the z-axis is automatically determined as normal to the t-,x-,y--axes. Let be the acceleration-vector at , be the motion-vector at . Then the force-vector exerted by the first electron e (moving in any possible manner) upon the second electron (likewise moving in any possible manner) at is represented by

For the components of the vector the three relations hold: —

and fourthly this vector is normal to the motion-vector , and through this circumstance alone, its dependence on this latter motion-vector arises.

If we compare with this expression the previous formulations[1] giving the same elementary law about the ponderomotive action of moving electric point-charges upon each other, then we cannot but admit, that the relations which occur here only reveal the inner essence of full simplicity first in four dimensions; but upon a space of three dimensions that is forced upon them from the outset, they cast very complicated projections.

In the mechanics reformed according to the world-postulate, the disharmonies which have disturbed the relations between Newtonian mechanics and modern electrodynamics automatically disappear. I still shall consider the position of the Newtonian law of attraction to this postulate. I will assume that when two point-masses m and describe their world-lines, a moving force-vector is exerted by m upon , and the expression is just the same as in the case of the electron previously discussed; we only have to write instead of . We shall consider now the special case in which the acceleration-vector of m is constantly zero; then t may be introduced in such a manner that m may be regarded as fixed, the motion of
——————

  1. K. Schwarzschild, Göttinger Nachr. 1903, p. 132. — H. A. Lorentz, Enzykl. d. math. Wissensch., Art. V, 14, p. 199.