Page:A Treatise on Electricity and Magnetism - Volume 2.djvu/38

From Wikisource
Jump to navigation Jump to search
This page has been validated.
6
ELEMENTARY THEORY OF MAGNETISM.
[380.

otherwise. In fact, a theory of magnetic matter, if used in a purely mathematical sense, cannot fail to explain the phenomena, provided new laws are freely introduced to account for the actual facts.

One of these new laws must be that the magnetic fluids cannot pass from one molecule or particle of the magnet to another, but that the process of magnetization consists in separating to a certain extent the two fluids within each particle, and causing the one fluid to be more concentrated at one end, and the other fluid to be more concentrated at the other end of the particle. This is the theory of Poisson.

A particle of a magnetizable body is, on this theory, analogous to a small insulated conductor without charge, which on the two- fluid theory contains indefinitely large but exactly equal quantities of the two electricities. When an electromotive force acts on the conductor, it separates the electricities, causing them to become manifest at opposite sides of the conductor. In a similar manner, according to this theory, the magnetizing force causes the two kinds of magnetism, which were originally in a neutralized state, to be separated, and to appear at opposite sides of the magnetized particle.

In certain substances, such as soft iron and those magnetic substances which cannot be permanently magnetized, this magnetic condition, like the electrification of the conductor, disappears when the inducing force is removed. In other substances, such as hard steel, the magnetic condition is produced with difficulty, and, when produced, remains after the removal of the inducing force.

This is expressed by saying that in the latter case there is a Coercive Force, tending to prevent alteration in the magnetization, which must be overcome before the power of a magnet can be either increased or diminished. In the case of the electrified body this would correspond to a kind of electric resistance, which, unlike the resistance observed in metals, would be equivalent to complete insulation for electromotive forces below a certain value.

This theory of magnetism, like the corresponding theory of electricity, is evidently too large for the facts, and requires to be restricted by artificial conditions. For it not only gives no reason why one body may not differ from another on account of having more of both fluids, but it enables us to say what would be the properties of a body containing an excess of one magnetic fluid. It is true that a reason is given why such a body cannot exist,