Page:A short history of astronomy(1898).djvu/297

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§ 190]
Tides and Comets
237

problem at all manageable, but which were, certainly not true, and consequently, as he was well aware, important modifications would necessarily have to be made, in order to bring his results into agreement with actual facts. The mere presence of land not covered by water is, for example, sufficient by itself to produce important alterations in tidal effects at different places. Thus Newton's theory was by no means equal to such a task as that of predicting the times of high tide at any required place, or the height of any required tide, though it gave a satisfactory explanation of many of the general characteristics of tides.

190. As we have seen (chapter v., § 103; chapter vii., § 146), comets until quite recently had been commonly regarded as terrestrial objects produced in the higher regions of our atmosphere, and even the more enlightened astronomers who, like Tycho, Kepler, and Galilei, recognised them as belonging to the celestial bodies, were unable to give an explanation of their motions and of their apparently quite irregular appearances and disappearances. Newton was led to consider whether a comet's motion could not be explained, like that of a planet, by gravitation towards the sun. If so then, as he had proved near the beginning of the Principia, its path must be either an ellipse or one of two other allied curves, the parabola and hyperbola. If a comet moved in an ellipse which only differed slightly from a circle, then it would never recede to any very great distance from the centre of the solar system, and would therefore be regularly visible, a result which was contrary to observation. If, however, the ellipse was very elongated, as shewn in fig. 73, then the period of revolution might easily be very great, and, during the greater part of it, the comet would be so far from the sun and consequently also from the earth as to be invisible. If so the comet would be seen for a short time and become invisible, only to reappear after a very long time, when it would naturally be regarded as a new comet. If again the path of the comet were a parabola (which may be regarded as an ellipse indefinitely elongated), the comet would not return at all, but would merely be seen once when in that part of its path which is near the sun. But if a comet moved in a parabola, with the sun in a focus,