Page:BraceNegative1905.djvu/7

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Second and Third Order Tests of the "Æther Drift."
77

would be possible. With the former conditions, and allowing a frequency in fluctuation of 10 per second for good resolution to the eye, a difference in speed not greater than one part in a million of the two eclipsing systems would be requisite. While this seems extremely small, experience shows that such an approximation is entirely practicable. Thus Newcomb[1] records a "run" in his measurement of the velocity of light, in which his micrometer showed "beautiful bisection" during the greater portion of the duration (2 minutes) of such a "run." Allowing this setting to one part in ten of his unit, which was 2".4, out of a total deviation of 7500" of arc for a period of 90 seconds, we have a fluctuation in the speed of only one part in 27,000,000. If the two mirrors could be regulated to this degree, we should still have less than one-tenth the fluctuation of our limit, from the two mirrors combined. Hence, so far as speed regulation is concerned, a much higher eclipse frequency, say the forty-million limit, is possible. The other disturbances would be of the same order as encountered by Newcomb over his total "go" and "return" distance of 5000 in. Supposing the eye could detect a difference in intensity of two per cent, between the two fields (under very favourable conditions this sensibility is one-half of one percent.), we should need an interval corresponding to one hundred eclipses to detect a change in velocity equal to the aberration constant, since we have to add the effects from each ray. This would mean a distance between the mirrors of 3000 m. for the lower and 750 m. for the higher eclipse frequency referred to, which is much within the distance given above in Newcomb's experiment.

Of the other methods proposed,[2] several do not require a return of the ray in the determination of the velocity constant. Thus the rotation of a polarizing system, such as a half-shade nicol or tourmaline system, could be carried up to 3000 revolutions per second. Polishing machines are now run up to 2000 revolutions per second. Allowing a sensibility of 0°.01, a distance of 15 kilometres would give a variation in velocity of one part in ten thousand.

The objection to the above methods and other similar ones, is the great distance required. If we could increase the eclipse frequency, the distance could be reduced accordingly. This can be attained by the use of electric oscillations in conjunction with suitable optical systems. Two methods proposed

  1. Astronomical Papers of American Ephemeris, vol. ii. pts. iii., iv. p. 172.
  2. All the methods referred to in the paper were devised as far back as 1889-90, and have been developed experimentally to a greater or less extent since.