Page:BraceStLouis1904.djvu/8

From Wikisource
Jump to navigation Jump to search
This page has been validated.
112
PHYSICS OF ETHER

In fact, Fizeau himself has stated since that his observations were not absolutely decisive. While the test is now probably within experimental limits with the more highly refined half-shade systems, other modes of experimenting on different optical principles with greater sensibilities have given negative results, thus disproving the existence of a phenomenon which Fizeau's experiment apparently established, and making a repetition of this experiment, which is of doubtful execution, unnecessary.

The effect of the motion of a natural rotative substance through the ether on the rotation of the plane of polarization is of considerable importance in its bearings on certain controverted points in some of the recent theories of a quiescent ether. Mascart, who first studied the problem in the case of quartz, was unable to detect any difference in the rotation when a ray was propagated in and against the direction of motion of the earth. This variation in the total rotation, which he could detect, was one part in 20,000, or one part in 40,000 on reversal. This experiment as thus carried out corresponds to a first order effect. Rayleigh quite recently has repeated this experiment with a sensibility five times as great, and obtained negative results, likewise. The impossibility of obtaining quartz in sufficient quantity and purity, or natural rotary liquids of sufficient power, to attain the extreme limit of polariscopic possibilities seems to make even an approximation to a second order effect entirely improbable, although the higher frequencies might be used, where the power may be ten times as great. On the other hand, the effect of the mechanical rotation of such a medium on the circular components is, however, probably not beyond experimental possibilities in polariscopic work.

On the electrical side several first order experiments have been made which likewise have given negative results. Des Coudres has attempted to determine the difference in the induction on each of two coils placed symmetrically, with respect to a third coaxial coil between them. On compensating for the effects of each on the galvanometer when the axis of the system was in the direction of drift, and then reversing the direction of the system, no influence on the galvanometer could be observed. The effect which should be observed corresponds to the second order of the aberration. However, without compensating factors, the theory of induction phenomena shows that second order effects should be looked for in systems moving through the ether. The same may be said of other electrical experiments.

The difficulties in formulating a theory which will explain the results of all experiments involving tests to the first order of sensibility only on the assumption of either a quiescent or a convected ether, are much easier met than when second and higher orders have to be taken into consideration. Here we find what, at first sight,