Page:EB1911 - Volume 01.djvu/303

From Wikisource
Jump to navigation Jump to search
This page has been validated.
268
AERONAUTICS
  

the sending up of unmanned balloons (ballons sondes) equipped with automatic recording instruments, and kites (q.v.) have also been employed for similar meteorological purposes. (See also Meteorology.)

The balloon had not been discovered very long before it received a military status, and soon after the beginning of the French revolutionary war an aeronautic school was founded at Meudon, in charge of Guyton de Morveau, the chemist, and Colonel J. M. J. Coutelle (1748–1835). Four balloons were constructed for the armies of the north, of Military balloons.the Sambre and Meuse, of the Rhine and Moselle, and of Egypt. In June 1794 Coutelle ascended with the adjutant and general to reconnoitre the hostile army just before the battle of Fleurus, and two reconnaissances were made, each occupying four hours. It is generally stated that it was to the information so gained that the French victory was due. The balloon corps was in constant requisition during the campaign, but it does not appear that, with the exception of the reconnaissances just mentioned, any great advantages resulted, except in a moral point of view. But even this was of importance, as the enemy were much disconcerted at having their movements so completely watched, while the French were correspondingly elated at the superior information it was believed they were gaining. An attempt was made to revive the use of balloons in the African campaign of 1830, but no opportunity occurred in which they could be employed. It is said that in 1849 a reconnoitring balloon was sent up from before Venice, as also were small balloons loaded with bombs to be exploded by time-fuses. In the French campaign against Italy in 1859 the French had recourse to the use of balloons, but this time there was not any aerostatic corps, and their management was entrusted to the brothers Godard. Several reconnaissances were made, and one of especial interest the day before the battle of Solferino. No information of much importance seems, however, to have been gained thereby. In the American Civil War (1861) balloons were a good deal used by the Federals. There was a regular balloon staff attached to McClellan’s army, with a captain, an assistant-captain and about 50 non-commissioned officers and privates. The apparatus consisted of two generators, drawn by four horses each; two balloons, drawn by four horses each, and an acid-cart, drawn by two horses. The two balloons used contained about 13,000 and 26,000 ft. of gas, and the inflation usually occupied about three hours. (See Royal Engineers’ Papers, vol. xii.) By their aid useful information was gained about the enemy round Richmond and in other places, but eventually difficulties of transport and the topography of the theatre of war made ballooning impracticable; and little was heard of it after the first two years of the war.

The balloon proved itself very valuable during the siege of Paris (1870–71). It was by it alone that communication was kept up between the besieged city and the external world, as the balloons carried away from Paris the pigeons which afterwards brought back to it the news of the provinces. The total number of balloons that ascended from Paris during the siege, conveying persons and despatches, was sixty-four—the first having started on the 23rd of September 1870, and the last on the 28th of January 1871. Gambetta effected his escape from Paris, on the 7th of October, in the balloon “Armand-Barbes,” an event which doubtless led to the prolongation of the war. Of the sixty-four balloons only two were never heard of; they were blown out to sea. One of the most remarkable voyages was that of the “Ville d'Orleans,” which, leaving Paris at eleven o'clock on the 21st of November, descended fifteen hours afterwards near Christiania, having crossed the North Sea. Several of the balloons on their descent were taken by the Prussians, and a good many were fired at while in the air. The average size of the balloons was from 2000 to 2050 metres, or from 70,000 to 72,000 cub. ft. The above facts are extracted from Les Ballons du siège de Paris, a sheet published by Bulla and Sons, Paris, and compiled by the brothers Tissandier, well-known French aeronauts, which gives the name, size and times of ascent and descent of every balloon that left Paris, with the names of the aeronaut and generally also of the passengers, the weight of despatches, the number of pigeons, &c. Only those balloons, however, are noticed in which some person ascended. The balloons were manufactured and despatched (generally from the platforms of the Orleans or the Northern railway) under the direction of the Post Office. The aeronauts employed were mostly sailors, who did their work very well. No use whatever was made in the war of balloons for purposes of reconnaissance.

Ballooning, however, as a recognized military science, only dates back to about the year 1883 or 1884, when most of the powers organized regular balloon establishments. In 1884–85 the French found balloons very useful during their campaign in Tongking; and the British government also despatched balloons with the Bechuanaland expedition, and also with that to Suakin in those years. During the latter campaign several ascents were made in the presence of the enemy, on whom it was said that a great moral effect was produced. The employment of balloons has been common in nearly all modern wars.

We may briefly describe the apparatus used in military operations. The French in the campaigns of the 19th century used varnished silk balloons of about 10,000 cub. ft. capacity. The Americans in the Civil War used much larger ones. those of 26,000 cub. ft. being found the most suitable. These were also of varnished silk. In the present day most nations use balloons of about 20,000 cub. ft., made of varnished cambric; but the British war balloons, made of goldbeater skin, are usually of comparatively small size, the normal capacity being 10,000 cub. ft., though others of 7000 and 4500 cub. ft. have also been used, as at Suakin. The usual shape is spherical; but since 1896 the Germans, and now other nations, have adopted a long cylindrical-shaped balloon, so affixed to its cable as to present an inclined surface to the wind and thus act partly on the principle of a kite. Though coal-gas and even hot air may occasionally be used for inflation, hydrogen gas is on account of its lightness far preferable. In the early days of ballooning this had to be manufactured in the field, but nowadays it is almost universally carried compressed in steel tubes. About 100 such tubes, each weighing 75 ℔, are required to fill a 10,000-ft. balloon. Tubes of greater capacity have also been tried.

The balloon is almost always used captive. If allowed to go free it will usually be rapidly carried away by the wind and the results of the observations cannot easily be transmitted back. Occasions may occur when such ascents will be of value, but the usual method is to send up a captive balloon to a height of somewhere about 1000 ft. With the standard British balloon two officers are sent up, one of whom has now particularly to attend to the management of the balloon, while the other makes the observations.

With regard to observations from captive balloons much depends on circumstances. In a thickly wooded country, such as that in which the balloons were used in the American Civil War, and in the war in Cuba (in which the balloon merely served to expose the troops to severe fire), no very valuable information is, as a rule, to be obtained; but in fairly open country all important movements of troops should be discernible by an experienced observer at any point within about four or five miles of the balloon. The circumstances, it may be mentioned, are such as would usually preclude one unaccustomed to ballooning from affording valuable reports. Not only is he liable to be disturbed by the novel and apparently hazardous situation, but troops and features of the ground often have so peculiar an appearance from that point of view, that a novice will often have a difficulty in deciding whether an object be a column of troops or a ploughed field. Then again, much will depend on atmospheric conditions. Thus, in misty weather a balloon is well-nigh useless; and in strong winds, with a velocity of anything over 20 m. an hour, efficient observation becomes a matter of difficulty. When some special point has to be reported on, such as whether there is any large body of troops behind a certain hill or wood, a rapid ascent may still be made in winds up to 30 m. an hour, but the balloon would then be so unsteady that no careful scouting could be made. It is usually estimated that a successful captive ascent can only be made in England on half the days of the year. As a general rule balloon ascents would be made for one of the following objects:—to examine the country for an enemy; to reconnoitre the enemy’s position; to ascertain the strength of his force, number of guns and exact situation of the various arms; also to note the plan of his earthworks or fortifications. During an action the aerial observer would be on the look-out for any movements of the enemy and give warning of flank attacks or surprises. Such an observer could also keep the general informed as to the progress of various detached parties of his own force, as to the advance of reinforcements, or to the conduct of any fighting going on at a distance. Balloon observations are also of especial aid to artillery in correcting their aim.