Page:EB1911 - Volume 01.djvu/818

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
772
ALUMINIUM
  

they are in frequent demand and give perfect satisfaction. Difficulties were at first encountered in making the necessary joints, but these have been overcome by practice and experience.

Two points connected with this metal are of sufficient moment to demand a few words by way of conclusion. Its extraordinary lightness forms its chief claim to general adoption, yet is apt to cause mistakes when its price is mentioned. It is the weight of a mass of metal which governs its financial value; its industrial value, in the vast majority of cases, depends on the volume of that mass. Provided it be rigid, the bed-plate of an engine is no better for weighing 30 cwt. than for weighing 10 cwt. A saucepan is required to have a certain diameter and a certain depth in order that it may hold a certain bulk of liquid: its weight is merely an encumbrance. Copper being 31/3 times as heavy as aluminium, whenever the latter costs less than 31/3 times as much as copper it is actually cheaper. It must be remembered, too, that electrolytic aluminium only became known during the last decade of the 19th century. Samples dating from the old sodium days are still in existence, and when they exhibit unpleasant properties the defect is often ascribed to the metal instead of to the process by which it was won. Much has yet to be learnt about the practical qualities of the electrolytic product, and although every day’s experience serves to place the metal in a firmer industrial position, a final verdict can only be passed after the lapse of time. The individual and collective influence of the several impurities which occur in the product of the Héroult cell is still to seek, and the importance of this inquiry will be seen when we consider that if cast iron, wrought iron and steel, the three totally distinct metals included in the generic name of “iron”—which are only distinguished one from another chemically by minute differences in the proportion of certain non-metallic ingredients—had only been in use for a comparatively few years, attempts might occasionally be made to forge cast iron, or to employ wrought iron in the manufacture of edge-tools.  (E. J. R) 

Compounds of Aluminium.

Aluminium oxide or alumina, Al2O3, occurs in nature as the mineral corundum (q.v.), notable for its hardness and abrasive power (see Emery), and in well-crystallized forms it constitutes, when coloured by various metallic oxides, the gem-stones, sapphire, oriental topaz, oriental amethyst and oriental emerald. Alumina is obtained as a white amorphous powder by heating aluminium hydroxide. This powder, provided that it has not been too strongly ignited, is soluble in strong acids; by ignition it becomes denser and nearly as hard as corundum; it fuses in the oxyhydrogen flame or electric arc, and on cooling it assumes a crystalline form closely resembling the mineral species. Crystallized alumina is also obtained by heating the fluoride with boron trioxide; by fusing aluminium phosphate with sodium sulphate; by heating alumina to a dull redness in hydrochloric acid gas under pressure; and by heating alumina with lead oxide to a bright red heat. These reactions are of special interest, for they culminate in the production of artificial ruby and sapphire (see Gems, Artificial).

Aluminium Hydrates.—Several hydrated forms of aluminium oxide are known. Of these hydrargillite or gibbsite, Al(OH)3, diaspore, AlO(OH), and bauxite, Al2O(OH)4, occur in the mineral kingdom. Aluminium hydrate, Al(OH)3, is obtained as a gelatinous white precipitate, soluble in potassium or sodium hydrate, but insoluble in ammonium chloride, by adding ammonia to a cold solution of an aluminium salt; from boiling solutions the precipitate is opaque. By drying at ordinary temperatures, the hydrate Al(OH)3·H2O is obtained; at 300° this yields AlO(OH), which on ignition gives alumina, Al2O3. Precipitated aluminium hydrate finds considerable application in dyeing. Soluble modifications were obtained by Walter Crum (Journ. Chem. Soc., 1854, vi. 216), and Thomas Graham (Phil. Trans., 1861, p. 163); the first named decomposing aluminium acetate (from lead acetate and aluminium sulphate) with boiling water, the latter dialysing a solution of the basic chloride (obtained by dissolving the hydroxide in a solution of the normal chloride). Both these soluble hydrates are readily coagulated by traces of a salt, acid or alkali; Crum’s hydrate does not combine with dye-stuffs, neither is it soluble in excess of acid, while Graham’s compound readily forms lakes, and readily dissolves when coagulated in acids.

In addition to behaving as a basic oxide, aluminium oxide (or hydrate) behaves as an acid oxide towards the strong bases with the formation of aluminates. Potassium aluminate, K2Al2O4, is obtained in solution by dissolving aluminium hydrate in caustic potash; it is also obtained, as crystals containing three molecules of water, by fusing alumina with potash, exhausting with water, and crystallizing the solution in vacuo. Sodium aluminate is obtained in the manufacture of alumina; it is used as a mordant in dyeing, and has other commercial applications. Other aluminates (in particular, of iron and magnesium), are of frequent occurrence in the mineral kingdom, e.g. spinel, gahnite, &c.

Salts of Aluminium.—Aluminium forms one series of salts, derived from the trioxide, Al2O3. These exhibit, in certain cases, marked crystallographical and other analogies with the corresponding salts of chromium and ferric iron.

Aluminium fluoride, AlF3, obtained by dissolving the metal in hydrofluoric acid, and subliming the residue in a current of hydrogen, forms transparent, very obtuse rhombohedra, which are insoluble in water. It forms a series of double fluorides, the most important of which is cryolite (q.v.); this mineral has been applied to the commercial preparation of the metal (see above). Aluminium chloride, AlCl3, was first prepared by Oersted, who heated a mixture of carbon and alumina in a current of chlorine, a method subsequently improved by Wöhler, Bunsen, Deville and others. A purer product is obtained by heating aluminium turnings in a current of dry chlorine, when the chloride distils over. So obtained, it is a white crystalline solid, which slowly sublimes just below its melting point (194°). Its vapour density at temperatures above 750° corresponds to the formula AlCl3; below this point the molecules are associated. It is very hygroscopic, absorbing water with the evolution of hydrochloric acid. It combines with ammonia to form AlCl3·3NH3; and forms double compounds with phosphorus pentachloride, phosphorus oxychloride, selenium and tellurium chlorides, as well as with many metallic chlorides; sodium aluminium chloride, AlCl3·NaCl, is used in the production of the metal. As a synthetical agent in organic chemistry, aluminium chloride has rendered possible more reactions than any other substance; here we can only mention the classic syntheses of benzene homologues. Aluminium bromide, AlBr3, is prepared in the same manner as the chloride. It forms colourless crystals, melting at 90°, and boiling at 265°-270°. Aluminium iodide, AlI3, results from the interaction of iodine and aluminium. It forms colourless crystals, melting at 185°, and boiling at 360°. Aluminium sulphide, Al2S3, results from the direct union of the metal with sulphur, or when carbon disulphide vapour is passed over strongly heated alumina. It forms a yellow fusible mass, which is decomposed by water into alumina and sulphuretted hydrogen. Aluminium sulphate Al(SO4)3, occurs in the mineral kingdom as keramohalite, Al2(SO4)3·18H2O, found near volcanoes and in alum-shale; aluminite or websterite is a basic salt, Al2(SO4)(OH)4·7H2O. Aluminium sulphate, known commercially as “concentrated alum” or “sulphate of alumina,” is manufactured from kaolin or china clay, which, after roasting (in order to oxidize any iron present), is heated with sulphuric acid, the clear solution run off, and evaporated. “Alum cake” is an impure product. Aluminium sulphate crystallizes as Al2(SO4)3·18H2O in tablets belonging to the monoclinic system. It has a sweet astringent taste, very soluble in water, but scarcely soluble in alcohol. On heating, the crystals lose water, swell up, and give the anhydrous sulphate, which, on further heating, gives alumina. It forms double salts with the sulphates of the metals of the alkalis, known as the alums (see Alum).

Aluminium nitride (AlN) is obtained as small yellow crystals when aluminium is strongly heated in nitrogen. The nitrate, Al(NO3)3, is obtained as deliquescent crystals (with 8H2O)