Page:EB1911 - Volume 03.djvu/192

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
BACTERIOLOGY
175

another class of diseases the bacteria are restricted to some particular part of the body, and the symptoms are due to toxins which are absorbed from it. Thus in cholera the bacteria are practically confined to the intestine, in diphtheria to the region of the false membrane, in tetanus to some wound. In the last-mentioned disease even the local multiplication depends upon the presence of other bacteria, as the tetanus bacillus has practically no power of multiplying in the healthy tissues when introduced alone.

The effects produced by bacteria may be considered under the following heads: (1) tissue changes produced in the vicinity of the bacteria, either at the primary or secondary foci; (2) tissue changes produced at a distance Tissue changes.by absorption of their toxins; (3) symptoms. The changes in the vicinity of bacteria are to be regarded partly as the direct result of the action of toxins on living cells, and partly as indicating a reaction on the part of the tissues. (Many such changes are usually grouped together under the heading of “inflammation” of varying degree—acute, subacute and chronic.) Degeneration and death of cells, haemorrhages, serous and fibrinous exudations, leucocyte emigration, proliferation of connective tissue and other cells, may be mentioned as some of the fundamental changes. Acute inflammation of various types, suppuration, granulation-tissue formation, &c., represent some of the complex resulting processes. The changes produced at a distance by distribution of toxins may be very manifold—cloudy swelling and fatty degeneration, serous effusions, capillary haemorrhages, various degenerations of muscle, hyaline degeneration of small blood-vessels, and, in certain chronic diseases, waxy degeneration, all of which may be widespread, are examples of the effects of toxins, rapid or slow in action. Again, in certain cases the toxin has a special affinity for certain tissues. Thus in diphtheria changes in both nerve cells and nerve fibres have been found, and in tetanus minute alterations in the nucleus and protoplasm of nerve cells.

The lesions mentioned are in many instances necessarily accompanied by functional disturbances or clinical symptoms, varying according to site, and to the nature and degree of the affection. In addition, however, there Symptoms.occur in bacterial diseases symptoms to which the correlated structural changes have not yet been demonstrated. Amongst these the most important is fever with increased protein metabolism, attended with disturbances of the circulatory and respiratory Systems. Nervous symptoms, somnolence, coma, spasms, convulsions and paralysis are of common occurrence. All such phenomena, however, are likewise due to the disturbance of the molecular constitution of living cells. Alterations in metabolism are found to be associated with some of these, but with others no corresponding physical change can be demonstrated. The action of toxins on various glands, producing diminished or increased functional activity, has a close analogy to that of certain drugs. In short, if we place aside the outstanding exception of tumour growth, we may say that practically all the important phenomena met with in disease may be experimentally produced by the injection of bacteria or of their toxins.

The result of the entrance of a virulent bacterium into the tissues of an animal is not a disease with hard and fast characters, but varies greatly with circumstances. With regard to the subject of infection the chief factor Suscepti-
bility.
is susceptibility; with regard to the bacterium virulence is all-important. Susceptibility, as is well recognized, varies much under natural conditions in different species, in different races of the same species, and amongst individuals of the same race. It also varies with the period of life, young subjects being more susceptible to certain diseases, e.g. diphtheria, than adults. Further, there is the very important factor of acquired susceptibility. It has been experimentally shown that conditions such as fatigue, starvation, exposure to cold, &c., lower the general resisting powers and increase the susceptibility to bacterial infection. So also the local powers of resistance may be lowered by injury or depressed vitality. In this way conditions formerly believed to be the causes of disease are now recognized as playing their part in predisposing to the action of the true causal agent, viz. the bacterium. In health the blood and internal tissues are bacterium-free; after death they offer a most suitable pabulum for various bacteria; but between these two extremes lie states of varying liability to infection. It is also probable that in a state of health organisms do gain entrance to the blood from time to time and are rapidly killed off. The circumstances which alter the virulence of bacteria will be referred to again in connexion with immunity, but it may be stated here that, as a general rule, the virulence of an organism towards an animal is increased by sojourn in the tissues of that animal. The increase of virulence becomes especially marked when the organism is inoculated from animal to animal in series, the method of passage. This is chiefly to be regarded as an adaptation to surroundings, though the fact that the less virulent members of the bacterial species will be liable to be killed off also plays a part. Conversely, the virulence tends to diminish on cultivation on artificial media outside the body, especially in circumstances little favourable to growth.

By immunity is meant non-susceptibility to a given disease, or to experimental inoculation with a given bacterium or toxin. The term must be used in a relative sense, and account must always be taken of the conditions present. Immunity.An animal may be readily susceptible to a disease on experimental inoculation, and yet rarely or never suffer from it naturally, because the necessary conditions of infection are not supplied in nature. That an animal possesses natural immunity can only be shown on exposing it to such conditions, this being usually most satisfactorily done in direct experiment. Further, there are various degrees of immunity, and in this connexion conditions of local or general diminished vitality play an important part in increasing the susceptibility. Animals naturally susceptible may acquire immunity, on the one hand by successfully passing through an attack of the disease, or, on the other hand, by various methods of inoculation. Two chief varieties of artificial immunity are now generally recognized, differing chiefly according to the mode of production. In the first—active immunity—a reaction or series of reactions is produced in the body of the animal, usually by injections of bacteria or their products. The second—passive immunity—is produced by the transference of a quantity of the serum of an animal actively immunized to a fresh animal; the term is applied because there is brought into play no active change in the tissues of the second animal. The methods of active immunity have been practically applied in preventive inoculation against disease; those of passive immunity have given us serum therapeutics. The chief facts with regard to each may now be stated.

1. Active Immunity.—The key to the artificial establishment of active immunity is given by the fact long established that recovery from an attack of certain infective diseases is accompanied by protection for varying periods of time against a subsequent attack. Hence follows the idea of producing a modified attack of the disease as a means of prevention—a principle which had been previously applied in inoculation against smallpox. Immunity, however, probably results from certain substances introduced into the system during the disease rather than from the disease itself; for by properly adjusted doses of the poison (in the widest sense), immunity may result without any symptoms of the disease occurring. Of the chief methods used in producing active immunity the first is by inoculation with bacteria whose virulence has been diminished, i.e. with an “attenuated virus.” Many of the earlier methods of attenuation were devised in the case of the anthrax bacillus, an organism which is, however, somewhat exceptional as regards the relative stability of its virulence. Many such methods consist, to speak generally, in growing the organism outside the body under somewhat unsuitable conditions, e.g. at higher temperatures than the optimum, in the presence of weak antiseptics, &c. The virulence of many organisms, however, becomes diminished when they are grown on the ordinary artificial media, and the diminution is sometimes accelerated by passing a current