Page:EB1911 - Volume 04.djvu/498

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
480
BREAKWATER
  


for a high mound with flat slopes, and in the second, owing to the increased pressure of air under which divers have to work in laying blocks for an upright wall in deep water. The ample depth in which superstructures are founded, the due protection afforded to their outer toe, the adoption of the sloping-block system for their construction, and the dispensing in most cases with a high sheltering wall on the sea side of the superstructure, render modern superstructures as stable as upright-wall breakwaters of similar height. Nevertheless, superstructures require to be given a greater thickness than similar upright walls, because the greater depth of water in which such composite breakwaters are built causes them to be exposed to larger waves under similar conditions.

The superstructures of composite breakwaters erected by the United States for harbours on the shores of Lake Superior were formerly in some cases composed of timber cribs floated into position and sunk by filling them with rubble stone. On account of the cheapness of timber several years ago in those regions, this simple mode of construction was also economical, even though the rapid decay of the timber in the portions of the cribs where it was alternately wet and dry involved its renewal about every fifteen years on the average. Owing, however, to the fact that the price of timber has increased considerably, whilst that of Portland cement has been reduced, durable concrete superstructures are beginning to be substituted for the rapidly decaying cribwork structures.

With the exception perhaps of the Alderney breakwater, which, owing to its exceptional exposure and the unparalleled depth into which it extended, had its superstructure so often breached by the sea that, owing to the cost of maintenance, the inner portion only has been kept in repair, the composite breakwater of Bilbao harbour has probably proved the most difficult to construct on account of its great exposure. The original design consisted of a wide rubble mound up to about 161/2 ft. below low water, a mound of large concrete blocks up to low water of equinoctial spring tides, and a solid masonry superstructure well protected at its outer toe by a projection of masonry, and raised several feet above high water, forming a quay sheltered by a promenade wall. The rise of equinoctial spring tides at the mouth of the river Nervion is 143/4 ft. In carrying out the work, however, the superstructure built in the summer months was for the most part destroyed by the following winter storms; and, accordingly, the superstructure was eventually constructed on a widened rubble base, so as to be sheltered to some extent by the outlying concrete-block mound already deposited, a system subsequently adopted in rebuilding the damaged portion of the North Pier at Tynemouth under shelter of the ruins of the previous work. The modified superstructure of the Bilbao breakwater was founded on the extended rubble mound at a depth of 161/4 ft. below low water, and formed of iron caissons partially filled with concrete and floated out, sunk in position, and filled up with concrete blocks and concrete. It thus consists of a continuous row of concrete blocks, each of them being 422/3 ft. in width across the breakwater, 23 ft. in length along the line of the breakwater, 23 ft. high, and weighing 1400 tons. These caisson blocks, raised 63/4 ft. above low water, form the base of the superstructure, upon which the upper part was built of concrete blocks on each face with mass concrete filling between them, forming a continuous quay, 24 ft. wide, raised 8 ft. above high tide, and slightly sheltered by a curved parapet block only 5 ft. high. The outer toe of the caisson blocks is protected from being undermined by two tiers of large concrete blocks laid flat on the rubble mound. This superstructure has successfully resisted the attacks of the Atlantic waves rolling into the bay. At this breakwater and at Tynemouth advantage has been taken of the protection unintentionally provided by previous failures, by which the waves are broken before reaching the superstructure and pier respectively; but instead of introducing a wave-breaker of concrete blocks, for a protection to the superstructure, as arranged at Marmagao (fig. 11) and the outer arms at Madras, it would appear preferable to increase the width of the solid superstructure, if necessary, as carried out at Naples (fig. 12). and to dispense with a parapet and keep the superstructure low, as being unsuitable for a quay in exposed situations, according to the plan adopted at Colombo (fig. 9).

3. Upright-Wall Breakwaters.—The third type of breakwater consists of a solid structure founded directly on the sea-bottom, in the form of an upright wall, with only a moderate batter on each face. This form of breakwater is strictly limited to sites where the bed of the sea consists of rock, chalk, boulders, or other hard bottom not subject to erosion by scour, and where the depth does not exceed about 40 to 50 ft. If a solid breakwater were erected on a soft yielding bottom, it would be exposed to dislocation from irregular settlement; and such a structure, by obstructing or diverting the existing currents, tends to create a scour along its base; whilst the waves in recoiling from its sea face are very liable to produce erosion of the sea-bottom along its outer toe. Moreover, when the foundations for an upright-wall breakwater have to be levelled by divers, and the blocks laid under water by their help, the extension of such a breakwater into a considerable depth is undesirable on account of the increased pressure imposed upon diving operations.

The Admiralty pier at Dover was begun about the middle of the 19th century, and furnishes an early and notable example of an upright-wall breakwater resting upon a hard chalk bottom; and it was subsequently extended to a depth of about 42 ft. at low tide, in connexion with the works for forming a closed naval harbour at Dover. This breakwater, the Prince of Wales pier of the commercial harbour, and the eastern breakwater and detached south breakwater for the naval harbour, were all founded on a levelled bottom, carried down to the hard chalk underlying the surface layer, by means of men in diving-bells. The extension of the Admiralty pier and the other breakwaters of Dover harbour consist of bonded courses of concrete blocks, from 26 to 40 tons in weight, as shown in figs. 13 and 14, the outer blocks above low water being formed on their exposed side with a facing of granite rubble. The blocks, composed of six parts of sand and stones to one part of Portland cement, moulded in frames, and left to set thoroughly in the block-yard before being used, are all joggled together, and above low-water level are bedded in cement and the joints filled with cement grout. The blocks were laid by Goliath travelling cranes running on temporary staging supported at intervals of 501/4 ft. by clusters of iron piles carried down into the chalk bottom. On each line of staging there were four Goliaths, preceded by a stage-erecting machine. The front Goliath was used for working a grab for excavating the surface layer of chalk, which was finally levelled by divers, the second for carrying the diving-bell, the third for laying the blocks below low water, and the fourth for setting the blocks above low water. This succession of Goliaths enabled more rapid progress to be made than with a single Titan at the end of a breakwater; but it involved a considerable increase in the cost of the plant, owing to the temporary staging required. The foundations were carried down from 4 to 6 ft. into the chalk bottom, the deepest being 53 ft. below low water of spring tides, and the average 47 ft. With a rise of tide at springs of 183/4 ft., the average depth is thus approximately 66 ft. at high tide, necessitating a pressure of 29 ℔ on the square inch, which is the limit at which men can work without inconvenience in the diving-bells. The breakwaters are raised about 11 ft. above high water of springs. The detached southern breakwater was finished off at this level; but the extended western breakwater, or Admiralty pier, is provided with a promenade parapet on its exposed side, rising 13 ft. above the quay; and the eastern breakwater also has a parapet on its exposed eastern side, raised, however, only 9 ft. above its quay. The breakwaters are protected from scour along their outer toe by an apron of concrete blocks, extending 25 ft. out from their sea face.



Dover Breakwater.
Fig. 13.Fig. 14.
South Breakwater.Admiralty Pier Extension.

The levelling of the foundations for laying the courses of an upright-wall breakwater is costly and tedious, even in chalk; and the expense and delay are considerably enhanced where the bottom is hard rock. Accordingly, in constructing two breakwaters at the entrance to Aberdeen harbour Concrete-bag foundations. on a bottom of granite in 1870–1877, concrete bags were laid on the sea-bed; and these bags, by adapting themselves to the rocky irregularities, obviated levelling the bottom. They formed the foundation for the concrete blocks in the south breakwater; and by the deposit of successive layers of 50-ton concrete bags till they rose above low water, they constituted the whole of the submerged portion of the north breakwater. The 50-ton bags were deposited from hopper barges towed out to the site; and the portions of both breakwaters above low water were carried up with mass concrete. Subsequently, the breakwater at Newhaven was constructed on a foundation of chalk, with lop-ton concrete bags up to low water, and mass concrete above. Still later, the two breakwaters sheltering the approach to the river Wear (see Harbour) and the Sunderland docks were built with a foundation mound of concrete in bags, 56 to 116 tons in weight, on the uneven sea-bottom, raised slightly above low water of spring tides, on which a solid upright wall was erected, formed of concrete blocks on each side faced with granite, filled in the centre and capped on the top with mass concrete. The most exposed northern Roker breakwater, raised about 11 ft. above high water of springs where the rise is 14 ft. 5 in., is devoid of a parapet; but a subway formed near the top in each breakwater gives access to the light on the pierhead in stormy weather (fig. 15). These concrete bags are made by lining the hopper of the barge with jute canvas, which receives the concrete and is