Page:EB1911 - Volume 08.djvu/773

From Wikisource
Jump to navigation Jump to search
This page has been validated.
746
DYEING
  


introduced and continually handled or moved about in the solution, while the temperature of the latter is gradually raised to the boiling point in the course of 3/4 to 1 hour; after boiling for 1/4 to 1/2 hour longer, the operation is complete, and the material is washed and dried.

In practice, modifications of this normal process may be introduced, in order to ensure the dyeing of an even colour, i.e. free from such irregularities as cloudiness, streaks, &c., which may be due to the quality of the material or to the special properties of the acid colour employed. Materials of a firm, close texture, also the existence of a strong affinity between fibre and colouring matter, do not generally lend themselves to the dyeing of even colours, or to a satisfactory penetration of the material. Some acid colours dye even colours without any difficulty; others, however, do not. The addition of sodium sulphate to the dyebath exerts a restraining action; the dyeing therefore proceeds more slowly and regularly, and a more equal distribution and better absorption of the colouring matter takes place. Other devices to obtain even colours are: the use of old dye-liquors, a diminished amount of acid, the employment of weaker acids, e.g. acetic or formic acid or ammonium acetate, and the entering of the material at a low temperature.

In the application of so-called Alkali Blue the process of dyeing in an acid bath is impossible, owing to the insolubility of the colour-acid in an acid solution. Wool and silk, however, possess an affinity for the alkali salt of the colouring matter in neutral or alkaline solution, hence these fibres are dyed with the addition of about 5% borax; the material acquires only a pale colour, that of the alkali salt, in this dyebath, but by passing the washed material into a cold or tepid dilute solution of sulphuric acid a full bright blue colour is developed, due to the liberation of the colour-acid within the fibre. In the case of other acid colours, e.g. Chromotrope, Chrome Brown, Chromogen, Alizarin Yellow, &c., the dyeing in an acid bath is followed by a treatment with a boiling solution of bichromate of potash, alum, or chromium fluoride, whereby the colouring matter on the fibre is changed into insoluble oxidation products or colour-lakes. This operation of developing or fixing the colour is effected either in the same bath at the end of the dyeing operation, or in a separate bath. See also Artificial Mordant Colours.

When dyeing with certain acid colours, e.g. Eosine, Phloxine and other allied bright pink colouring matters derived from resorcin, the use of sulphuric acid as an assistant must be avoided, since the colours would thereby be rendered paler and duller, and only acetic acid must be employed.

The properties of the dyes obtained with the acid colours are extremely varied. Many are fugitive to light; on the other hand, many are satisfactorily fast, some even being very fast in this respect. As a rule, they do not withstand the operations of milling and scouring very well, hence acid colours are generally unsuitable for tweed yarns or for loose wool. They are largely employed, however, in dyeing other varieties of woollen yarn, silk yarn, union fabrics, dress materials, leather, &c. Previous to the discovery of the coal-tar colours very few acid colours were known, the most important one being Indigo Extract. Prussian Blue as applied to wool may also be regarded as belonging to this class, also the purple dyestuff known as Orchil or Cudbear.

The following list includes some of the more important acid colours now in use, arranged according to the colour they yield in dyeing:—

Red.—Wool scarlet, brilliant scarlet, erythrine, croceïn scarlet, brilliant croceïn, violamine G, scarlet 3R, crystal scarlet, new coccine, chromotrope 2R, azo acid magenta, Victoria scarlet, xylidine scarlet, Palatine scarlet, Biebrich scarlet, pyrotine, orchil red, Bordeaux B, milling red, azo carmine, acid magenta, fast acid violet A 2R, naphthylamine red, fast red, claret red, eosine, erythrosine, rose Bengale, phloxine, cyanosine, cloth red, lanafuchsine, rosinduline, erio carmine.

Orange.—Diphenylamine orange, methyl orange, naphthol orange, croceïn orange, brilliant orange, orange G, orange N, mandarin G R.

Yellow.—Picric acid, naphthol yellow S, fast yellow, brilliant yellow S, azoflavine, metanil yellow, resorcine yellow, tartrazine, quinoline yellow, milling yellow, azo yellow, Victoria yellow, brilliant yellow S, citronine, Indian yellow.

Green.—Acid green, guinea green, fast green, patent green, cyanol green, erio green, brilliant acid green 6 G.

Blue.—Alkali blue, soluble blue, opal blue, methyl blue, Höchst new blue, patent blue, ketone blue, cyanine, thiocarmine, fast blue, induline, violamine 3 B, azo acid blue, wool blue, indigo extract, erio glaucine, erio cyanine, erio blue, lanacyl blue, sulphon-azurine, sulphon-cyanine.

Violet.—Acid violet, red violet, regina violet, formyl violet, violamine B, fast violet, azo acid violet, erio violet, lanacyl violet.

Brown.—Fast brown, naphthylamine brown, acid brown, resorcine brown, azo brown, chrome brown, chromogene.

Black.—Naphthol black, azo black, wool black, naphthylamine black, jet black, anthracite black, Victoria black, azo acid black, brilliant black, union black, brilliant black B.

Basic Colours.—These colouring matters are the salts of organic colour-bases, their name being derived from the fact that their dyeing power resides entirely in the basic part of the salt. In the free state the bases are colourless and insoluble, but in combination with acids they form salts which are coloured and for the most part soluble in water. They are usually sold in the form of powder or crystals, the latter exhibiting frequently a beautiful metallic lustre. Wool and silk are dyed in a neutral bath, i.e. without any addition, the material not requiring any previous preparation. During the dyeing operation the animal fibres appear to play the part of an acid, for they decompose the colouring matter and unite with the colour-base to form an insoluble coloured salt or lake, while the acid of the colouring matter is liberated and remains in solution. Although, as a rule, a neutral dyebath is employed in dyeing wool, a slight addition (2%) of soap is sometimes made in order to give a brighter colour, while in other cases, e.g. with Victoria Blue, the dyebath must of necessity be made distinctly acid with acetic or sulphuric acid. Silk is usually dyed in a bath containing “boiled-off liquor” (i.e. the spent soap-liquor from the operation of scouring) neutralized or slightly acidified with acetic or tartaric acid. For a full colour use 2 or 3% colouring matter, enter the wool at a low temperature, heat gradually to near the boiling point in the course of 3/4 hour, and continue dyeing for 1/4 hour. Owing to the slight solubility of many basic colours, it is important to take the precaution of filtering the colour solution into the dyebath through a flannel filter, also to neutralize the alkalinity of calcareous water with a little acetic acid, to prevent decomposition of the colouring matter and precipitation of the colour-base.

Unlike the animal fibres, cotton has little or no affinity for the basic colours; hence the cotton dyer makes use of the fact that cotton has a natural attraction for tannic acid, and that the latter forms insoluble lakes with the bases of basic colours. Previous to dyeing, the cotton is prepared with tannic acid by steeping in a cold solution of the latter for several hours; cotton pieces are run at full width through a solution containing 2 to 6 oz. per gallon of tannic acid, and after being evenly squeezed are dried on steam cylinders. The cotton is then worked in a solution of tartar emetic or stannic chloride, so that the tannic acid absorbed by the fibre may be fixed upon it as insoluble tannate of antimony or tin. Although the tannic acid is thus united with metallic oxide, it still has the power of attracting the base of the colouring matter, and there is fixed upon the fibre an insoluble colour-lake, namely, a tannate of antimony and colour-base, which constitutes the dye. In this process the tannic acid is called the mordant, the tartar emetic acts as the fixing-agent for the tannic acid, and the cotton as finally prepared for dyeing is said to be mordanted. The proportions employed, reckoned on the weight of cotton, may vary from 2 to 10% tannic acid, or the equivalent in a decoction of sumach, myrabolans, or other tannin matter, and 1/2 to 3% tartar emetic. After mordanting and fixing of the mordant, the cotton is well washed and dyed in the cold or at 60° C. for 1/2 to 1 hour with the necessary colouring matter. Applied in this manner, basic colours are moderately fast to soap, but generally not to the action of light.

Linen is dyed in the same manner as cotton. Jute is dyed without any previous preparation, since it behaves like a tannin-mordanted fibre, attracting the basic colours direct.

The basic colours, to which class most of the earlier coal-tar colours belonged, are remarkable for their great colouring power, and in most cases for the brilliancy of the colours they yield. With the exception of certain dark colours, they are fugitive to light. It is interesting to note that only one vegetable colouring matter is at present recognized as belonging to this class, namely, the yellow dyestuff barberry bark and root (Berberis vulgaris) which contains the alkaloid berberine.

The following is a list of the more important basic colours derived from coal-tar:—

Red.—Magenta, safranine, rhodamine, pyronine red, rhoduline red, rosazeïn, induline scarlet.

Orange.—Chrysoïdine, phosphine, acridine orange, tannin orange.

Yellow.—Auramine, benzoflavine, thioflavine T, acridine yellow, homophosphine, rhoduline yellow.

Green.—Malachite green, emerald green, imperial green, China green, brilliant green, Victoria green, diamond green, methylene green, azine green.

Blue.—Methylene blue, new methylene blue, toluidine blue, thionine blue, indamine blue, Victoria blue, night blue, Nile blue, turquoise blue, marine blue, indoine blue, metamine blue, Capri blue, indazine, metaphenylene blue, paraphenylene blue, toluylene blue, indigene, indol blue, diphene blue, setopaline, setocyanine, setoglaucine, Helvetia blue.

Violet.—Methyl violet, crystal violet, ethyl purple, methylene violet, mauve, paraphenylene violet, rhoduline violet, methylene heliotrope.

Brown.—Bismarck brown.

Black.—Diazine black.

Grey.—Methylene grey, nigrisine, new grey.

Direct Colours.—The characteristic feature of the dyestuffs belonging to this class is that they dye cotton “direct”—i.e. without the aid of mordants. Two distinct series of colouring matters of this group may be distinguished—namely, Direct Cotton Colours and Sulphide Colours.

(a) Direct Cotton Colours.—The colours of this class are frequently called the Substantive Cotton Colours, Benzo Colours, Diamine Colours, Congo Colours. Considered from the chemical point of