Page:EB1911 - Volume 08.djvu/811

From Wikisource
Jump to navigation Jump to search
This page has been validated.
784
DYNASTY
  


the relative angular displacement is proportional to the radius of the circle described by the end of a light lever operated by mechanism between the spring-connected parts. By a device used by W. E. Dalby (Proc. Inst.C.E. 1897-1898, p. 132) the change in form of the spring is shown on a fixed indicator, which may be placed in any convenient position. Two equal sprocket wheels Q1, Q2, are fastened, the one to the spring pulley, the other to the shaft. An endless band is placed over them to form two loops, which during rotation remain at the same distance apart, unless relative angular displacement occurs between Q1 and Q2 (fig. 7) due to a change in form of the spring. The change in the distance d is proportional to the change in the torque transmitted from the shaft to the pulley. To measure this, guide pulleys are placed in the loops guided by a geometric slide, the one pulley carrying a scale, and the other an index. A recording drum or integrating apparatus may be arranged on the pulley frames. A quick variation, or a periodic variation of the magnitude of the force or torque transmitted through the springs, tends to set up oscillations, and this tendency increases the nearer the periodic time of the force variation approaches a periodic time of the spring. Such vibrations may be damped out to a considerable extent by the use of a dash-pot, or may be practically prevented by using a relatively stiff spring.

Every part of a machine transmitting force suffers elastic deformation, and the force may be measured indirectly by measuring the deformation. The relation between the two should in all cases be found experimentally. G. A. Hirn (see Les Pandynamomètres, Paris, 1876) employed this principle to measure the torque transmitted by a shaft. Signor Rosio used a telephonic method to effect the same end, and mechanical, optical and telephonic devices have been utilized by the Rev. F. J. Jervis-Smith. (See Phil. Mag. February 1898.)

H. Frahm,[1] during an important investigation on the torsional vibration of propeller shafts, measured the relative angular displacement of two flanges on a propeller shaft, selected as far apart as possible, by means of an electrical device (Engineering, 6th of February 1903). These measurements were utilized in combination with appropriate elastic coefficients of the material to find the horse-power transmitted from the engines along the shaft to the propeller. In this way the effective horse-power and also the mechanical efficiency of a number of large marine engines, each of several thousand horse-power, have been determined.

Fig. 8.

When a belt, in which the maximum and minimum tensions are respectively P and p ℔, drives a pulley, the torque exerted is (P−p)r ℔ ft., r being the radius of the pulley plus half the thickness of the belt. P and p may be measured directly by leading the belt round two freely hanging guide pulleys, one in the tight, the other in the slack part of the belt, and adjusting loads on them until a stable condition of running is obtained. In W. Froude’s belt dynamometer (see Proc. Inst. M.E., 1858) (fig. 8) the guide pulleys G1, G2 are carried upon an arm free to turn about the axis O. H is a pulley to guide the approaching and receding parts of the belt to and from the beam in parallel directions. Neglecting friction, the unbalanced torque acting on the beam is 4r {P−p} ℔ ft. If a force Q acting at R maintains equilibrium, QR/4=(P−p)r=T. Q is supplied by a spring, the extensions of which are recorded on a drum driven proportionally to the angular displacement of the driving pulley; thus a work diagram is obtained. In the Farcot form the guide pulleys are attached to separate weighing levers placed horizontally below the apparatus. In a belt dynamometer built for the Franklin Institute from the designs of Tatham, the weighing levers are separate and arranged horizontally at the top of the apparatus. The weighing beam in the Hefner-Alteneck dynamometer is placed transversely to the belt (see Electrotechnischen Zeitschrift, 1881, 7). The force Q, usually measured by a spring, required to maintain the beam in its central position is proportional to (P−p). If the angle θ1θ2=120°, Q=(P−p) neglecting friction.

When a shaft is driven by means of gearing the driving torque is measured by the product of the resultant pressure P acting between the wheel teeth and the radius of the pitch circle of the wheel fixed to the shaft. Fig. 9, which has been reproduced from J. White’s A New Century of Inventions (Manchester, 1822), illustrates possibly the earliest application of this principle to dynamometry. The wheel D, keyed to the shaft overcoming the resistance to be measured, is driven from wheel N by two bevel wheels L, L, carried in a loose pulley K. The two shafts, though in a line, are independent. A torque applied to the shaft A can be transmitted to D, neglecting friction, without change only if the central pulley K is held from turning; the torque required to do this is twice the torque transmitted.

Fig. 9.

The torque acting on the armature of an electric motor is necessarily accompanied by an equal and opposite torque acting on the frame. If, therefore, the motor is mounted on a cradle free to turn about knife-edges, the reacting torque is the only torque tending to turn the cradle when it is in a vertical position, and may therefore be measured by adjusting weights to hold the cradle in a vertical position. The rate at which the motor is transmitting work is then T2πn/550 H.P., where n is the revolutions per second of the armature.

See James Dredge, Electric Illumination, vol. ii. (London, 1885); W. W. Beaumont, “Dynamometers and Friction Brakes,” Proc. Inst.C.E. vol. xcv. (London, 1889); E. Brauer, “Über Bremsdynamometer and verwandte Kraftmesser,” Zeitschrift des Vereins deutscher Ingenieure (Berlin, 1888); J. J. Flather, Dynamometers and the Measurement of Power (New York, 1893).  (W. E. D.) 


DYNASTY (Gr. δυναστεία, sovereignty, the position of a δυνάοτης, lord, ruler, from δύνασθαι, to be able, δύναμις, power), a family or line of rulers, a succession of sovereigns of a country belonging to a single family or tracing their descent to a common ancestor. The term is particularly used in the history of ancient Egypt as a convenient means of arranging the chronology.


DYSART, a royal and police burgh and seaport of Fifeshire, Scotland, on the shore of the Firth of Forth, 2 m. N.E. of Kirkcaldy by the North British railway. Pop. (1901) 3562. It has a quaint old-fashioned appearance, many ancient houses in High Street bearing inscriptions and dates. The public buildings include a town hall, library, cottage hospital, mechanics’ institute and memorial hall. Scarcely anything is left of the old chapel dedicated to St Dennis, which for a time was used as a

  1. H. Frahm, “Neue Untersuchungen über die dynamischen Vorgänge in den Wellenleitungen von Schiffsmaschinen mit besonderer Berücksichtigung der Resonanzschwingungen,” Zeitschrift des Vereins deutscher Ingenieure, 31st May 1902.