Page:EB1911 - Volume 08.djvu/840

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
EARTH CURRENTS
813

Sir David Gill, when director of the Royal Observatory, Cape Town, instituted the magnificent project of working a latitude-degree measurement along the meridian of 30° long. This meridian passes through Natal, the Transvaal, by Lake Tanganyika, and from thence to Cairo; connexion with the Russo-Scandinavian meridian arc of the same longitude should be made through Asia Minor, Turkey, Bulgaria and Rumania. With the completion of this project a continuous arc of 105° in latitude will have been measured.[1]

Extensive triangle chains, suitable for latitude-degree measurements, have also been effected in Japan and Australia.

Besides, the systematization of gravity measurements is of importance, and for this purpose the association has instituted many reforms. It has ensured that the relative measurements made at the stations in different countries should be reduced conformably with the absolute determinations made at Potsdam; the result was that, in 1906, the intensities of gravitation at some 2000 stations had been co-ordinated. The intensity of gravity on the sea has been determined by the comparison of barometric and hypsometric observations (Mohn’s method). The association, at the proposal of Helmert, provided the necessary funds for two expeditions:—English Channel—Rio de Janeiro, and the Red Sea—Australia—San Francisco—Japan. Dr O. Hecker of the central bureau was in charge; he successfully overcame the difficulties of the work, and established the tenability of the isostatic hypothesis, which necessitates that the intensity of gravity on the deep seas has, in general, the same value as on the continents (without regard to the proximity of coasts).[2]

As the result of the more recent determinations, the ellipticity, compression or flattening of the ellipsoid of the earth may be assumed to be very nearly 1/298·3; a value determined in 1901 by Helmert from the measurements of gravity. The semi-major axis, a, of the meridian ellipse may exceed 6,378,000 inter. metres by about 200 metres. The central bureau have adopted, for practical reasons, the value 1/299·15, after Bessel, for which tables exist; and also the value a=6377397·155 (1 + 0·0001).

The methods of theoretical astronomy also permit the evaluation of these constants. The semi-axis a is calculable from the parallax of the moon and the acceleration of gravity on the earth; but the results are somewhat uncertain: the ellipticity deduced from lunar perturbations is 1/297·8 ± 2 (Helmert, Geodäsie, ii. pp. 460–473); William Harkness (The Solar Parallax and its related Constants, 1891) from all possible data derived the values: ellipticity=1/300·2 ± 3, a=6377972 ± 125 metres. Harkness also considered in this investigation the relation of the ellipticity to precession and nutation; newer investigations of the latter lead to the limiting values 1/296, 1/298 (Wiechert). It was clearly noticed in this method of determination that the influence of the assumption as to the density of the strata in the interior of the earth was but very slight (Radau, Bull. astr. ii. (1885) 157). The deviations of the geoid from the flattened ellipsoid of rotation with regard to the heights (the directions of normals being nearly the same) will scarcely exceed ± 100 metres (Helmert).[3]

The basis of the degree- and gravity-measurements is actually formed by a stationary sea-surface, which is assumed to be level. However, by the influence of winds and ocean currents the mean surface of the sea near the coasts (which one assumes as the fundamental sea-surface) can deviate somewhat from a level surface. According to the more recent levelling it varies at the most by only some decimeters.[4]

It is well known that the masses of the earth are continually undergoing small changes; the earth’s crust and sea-surface reciprocally oscillate, and the axis of rotation vibrates relatively to the body of the earth. The investigation of these problems falls in the programme of the Association. By continued observations of the water-level on sea-coasts, results have already been obtained as to the relative motions of the land and sea (cf. Geology); more exact levelling will, in the course of time, provide observations on countries remote from the sea-coast. Since 1900 an international service has been organized between some astronomical stations distributed over the north parallel of 39° 8′, at which geographical latitudes are observed whenever possible. The association contributes to all these stations, supporting four entirely: two in America, one in Italy, and one in Japan; the others partially (Tschardjui in Russia, and Cincinnati observatory). Some observatories, especially Pulkowa, Leiden and Tokyo, take part voluntarily. Since 1906 another station for South America and one for Australia in latitude −31° 55′ have been added. According to the existing data, geographical latitudes exhibit variations amounting to ±0·25″, which, for the greater part, proceed from a twelve- and a fourteen-month period.[5] (A. R. C.; F. R. H.) 


EARTH CURRENTS. After the invention of telegraphy it was soon found that telegraph lines in which the circuit is completed by the earth are traversed by natural electric currents which occasionally interfere seriously with their use, and which are known as “earth currents.”

1. Amongst the pioneers in investigating the subject were several English telegraphists, e.g. W. H. Barlow (1) and C. V. Walker (2), who were in charge respectively of the Midland and South-Eastern telegraph systems. Barlow noticed the existence of a more or less regular diurnal variation, and the result—confirmed by all subsequent investigators—that earth currents proper occur in a line only when both ends are earthed. Walker, as the result of general instructions issued to telegraph clerks, collected numerous statistics as to the phenomena during times of large earth currents. His results and those given by Barlow both indicate that the lines to suffer most from earth currents in England have the general direction N.E. to S.W. As Walker points out, it is the direction of the terminal plates relative to one another that is the essential thing. At the same time he noticed that whilst at any given instant the currents in parallel lines have with rare exceptions the same direction, some lines show normally stronger currents than others, and he suggested that differences in the geological structure of the intervening ground might be of importance. This is a point which seems still somewhat obscure.

Our present knowledge of the subject owes much to practical men, but even in the early days of telegraphy the fact that telegraph systems are commercial undertakings, and cannot allow

  1. Sir David Gill, Report on the Geodetic Survey of South Africa, 1833–1892 (Cape Town, 1896), vol. ii. 1901, vol. iii. 1905.
  2. O. Hecker, Bestimmung der Schwerkraft a. d. Atlantischen Ozean (Veröffentl. d. Kgl. Preuss. Geod. Inst. No. 11), Berlin, 1903.
  3. F. R. Helmert. “Neuere Fortschritte in der Erkenntnis der math. Erdgestalt” (Verhandl. des VII. Internationalen Geographen-Kongresses, Berlin, 1899), London, 1901.
  4. C. Lallemand, “Rapport sur les travaux du service du nivellement général de la France, de 1900 à 1906” (Comp. rend. de la 14ᵉ conf. gén. de l’Assoc. Géod. Intern., 1903, p. 178).
  5. T. Albrecht, Resultate des internat. Breitendienstes, i. and ii. (Berlin, 1903 and 1906); F. Klein and A. Sommerfeld, Über die Theorie des Kreisels, iii. p. 672; R. Spitaler, “Die periodischen Luftmassenverschiebungen und ihr Einfluss auf die Lagenänderung der Erdaxe” (Petermanns Mitteilungen, Ergänzungsheft, 137); S. Newcomb, “Statement of the Theoretical Laws of the Polar Motion” (Astronomical Journal, 1898, xix. 158); F. R. Helmert, “Zur Erklärung der beobachteten Breitenänderungen” (Astr. Nachr. No. 3014); J. Weeder, “The 14-monthly period of the motion of the Pole from determinations of the azimuth of the meridian marks of the Leiden observatory” (Kon. Ak. van Wetenschappen to Amsterdam, 1900); A. Sokolof, “Détermination du mouvement du pôle terr. au moyen des mires méridiennes de Poulkovo” (Mél. math. et astr. vii., 1894); J. Bonsdorff, “Beobachtungen von δ Cassiopejae mit dem grossen Zenitteleskop” (Mitteilungen der Nikolai-Hauptsternwarte zu Pulkowo, 1907); J. Larmor and E. H. Hills, “The irregular movement of the Earth’s axis of rotation: a contribution towards the analysis of its causes” (Monthly Notices R.A.S., 1906, lxvii. 22); A. S. Cristie, “The latitude variation Tide” (Phil. Soc. of Wash., 1895, Bull. xiii. 103); H. G. van de Sande Bakhuysen, “Über die Änderung der Polhöhe” (Astr. Nachr. No. 3261); A. V. Bäcklund, “Zur Frage nach der Bewegung des Erdpoles” (Astr. Nachr. No. 3787); R. Schumann, “Über die Polhöhenschwankung” (Astr. Nachr. No. 3873); “Numerische Untersuchung” (Ergänzungshefte zu den Astr. Nachr. No. 11); Weitere Untersuchungen (No. 4142); Bull. astr., 1900, June, report of different theoretical memoirs.