Page:EB1911 - Volume 09.djvu/202

From Wikisource
Jump to navigation Jump to search
This page has been validated.
ELECTRICITY
185

magnetic pole, and Ampère showed that a magnet could be made to rotate on its own axis when a current was passed through it. The difficulty in this case consisted in discovering means by which the current could be passed through one half of the magnet without passing it through the other half. This, however, was overcome by sending the current out at the centre of the magnet by means of a short length of wire dipping into an annular groove containing mercury. Barlow, Sturgeon and others then showed that a copper disk could be made to rotate between the poles of a horseshoe magnet when a current was passed through the disk from the centre to the circumference, the disk being rendered at the same time freely movable by making a contact with the circumference by means of a mercury trough. These experiments furnished the first elementary forms of electric motor, since it was then seen that rotatory motion could be produced in masses of metal by the mutual action of conductors conveying electric current and magnetic fields. By his discovery of thermo-electricity in 1822 (Pogg. Ann. Phys., 6), T. J. Seebeck (1770–1831) opened up a new region of research (see Thermo-electricity). James Cumming (1777–1861) in 1823 (Annals of Philosophy, 1823) found that the thermo-electric series varied with the temperature, and J. C. A. Peltier (1785–1845) in 1834 discovered that a current passed across the junction of two metals either generated or absorbed heat.

Ohm’s Law.—In 1827 Dr G. S. Ohm (1787–1854) rendered a great service to electrical science by his mathematical investigation of the voltaic circuit, and publication of his paper, Die galvanische Kette mathematisch bearbeitet. Before his time, ideas on the measurable quantities with which we are concerned in an electric circuit were extremely vague. Ohm introduced the clear idea of current strength as an effect produced by electromotive force acting as a cause in a circuit having resistance as its quality, and showed that the current was directly proportional to the electromotive force and inversely as the resistance. Ohm’s law, as it is called, was based upon an analogy with the flow of heat in a circuit, discussed by Fourier. Ohm introduced the definite conception of the distribution along the circuit of “electroscopic force” or tension (Spannung), corresponding to the modern term potential. Ohm verified his law by the aid of thermo-electric piles as sources of electromotive force, and Davy, C. S. M. Pouillet (1791–1868), A. C. Becquerel (1788–1878), G. T. Fechner (1801–1887), R. H. A. Kohlrausch (1809–1858) and others laboured at its confirmation. In more recent times, 1876, it was rigorously tested by G. Chrystal (b. 1851) at Clerk Maxwell’s instigation (see Brit. Assoc. Report, 1876, p. 36), and although at its original enunciation its meaning was not at first fully apprehended, it soon took its place as the expression of the fundamental law of electrokinetics.

Induction of Electric Currents.—In 1831 Faraday began the investigations on electromagnetic induction which proved more fertile in far-reaching practical consequences than any of those which even his genius gave to the world. These advances all centre round his supreme discovery of the induction of electric currents. Fully familiar with the fact that an electric charge upon one conductor could produce a charge of opposite sign upon a neighbouring conductor, Faraday asked himself whether an electric current passing through a conductor could not in any like manner induce an electric current in some neighbouring conductor. His first experiments on this subject were made in the month of November 1825, but it was not until the 29th of August 1831 that he attained success. On that date he had provided himself with an iron ring, over which he had wound two coils of insulated copper wire. One of these coils was connected with the voltaic battery and the other with the galvanometer. He found that at the moment the current in the battery circuit was started or stopped, transitory currents appeared in the galvanometer circuit in opposite directions. In ten days of brilliant investigation, guided by clear insight from the very first into the meaning of the phenomena concerned, he established experimentally the fact that a current may be induced in a conducting circuit simply by the variation in a magnetic field, the lines of force of which are linked with that circuit. The whole of Faraday’s investigations on this subject can be summed up in the single statement that if a conducting circuit is placed in a magnetic field, and if either by variation of the field or by movement or variation of the form of the circuit the total magnetic flux linked with the circuit is varied, an electromotive force is set up in that circuit which at any instant is measured by the rate at which the total flux linked with the circuit is changing.

Amongst the memorable achievements of the ten days which Faraday devoted to this investigation was the discovery that a current could be induced in a conducting wire simply by moving it in the neighbourhood of a magnet. One form which this experiment took was that of rotating a copper disk between the poles of a powerful electric magnet. He then found that a conductor, the ends of which were connected respectively with the centre and edge of the disk, was traversed by an electric current. This important fact laid the foundation for all subsequent inventions which finally led to the production of electromagnetic or dynamo-electric machines.

Third Period.—With this supremely important discovery of Faraday’s we enter upon the third period of electrical research, in which that philosopher himself was the leading figure. He not only collected the facts concerning electromagnetic induction so industriously that nothing of importance remained for future discovery, and embraced them all in one law of exquisite simplicity, but he introduced his famous conception of lines of force which changed entirely the mode of regarding electrical phenomena. The French mathematicians, Coulomb, Biot, Poisson and Ampère, had been content to accept the fact that electric charges or currents in conductors could exert forces on other charges or conductors at a distance without inquiring into the means by which this action at a distance was produced. Faraday’s mind, however, revolted against this notion; he felt intuitively that these distance actions must be the result of unseen operations in the interposed medium. Accordingly when he sprinkled iron filings on a card held over a magnet and revealed the curvilinear system of lines of force (see Magnetism), he regarded these fragments of iron as simple indicators of a physical state in the space already in existence round the magnet. To him a magnet was not simply a bar of steel; it was the core and origin of a system of lines of magnetic force attached to it and moving with it. Similarly he came to see an electrified body as a centre of a system of lines of electrostatic force. All the space round magnets, currents and electric charges was therefore to Faraday the seat of corresponding lines of magnetic or electric force. He proved by systematic experiments that the electromotive forces set up in conductors by their motions in magnetic fields or by the induction of other currents in the field were due to the secondary conductor cutting lines of magnetic force. He invented the term “electrotonic state” to signify the total magnetic flux due to a conductor conveying a current, which was linked with any secondary circuit in the field or even with itself.

Faraday’s Researches.—Space compels us to limit our account of the scientific work done by Faraday in the succeeding twenty years, in elucidating electrical phenomena and adding to the knowledge thereon, to the very briefest mention. We must refer the reader for further information to his monumental work entitled Experimental Researches on Electricity, in three volumes, reprinted from the Phil. Trans. between 1831 and 1851. Faraday divided these researches into various series. The 1st and 2nd concern the discovery of magneto-electric induction already mentioned. The 3rd series (1833) he devoted to discussion of the identity of electricity derived from various sources, frictional, voltaic, animal and thermal, and he proved by rigorous experiments the identity and similarity in properties of the electricity generated by these various methods. The 5th series (1833) is occupied with his electrochemical researches. In the 7th series (1834) he defines a number of new terms, such as electrolyte, electrolysis, anode and cathode, &c., in connexion with electrolytic phenomena, which were immediately adopted into the vocabulary of science. His most important contribution at