Page:EB1911 - Volume 09.djvu/338

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
EMBRYOLOGY
315

speak of the retrogressive half as decay, considering an imaginary resting-point between the two as the adult or perfect state.”

There are two kinds of reproduction, the sexual and the asexual. The sexual method has for its results an increase of the number of kinds of individual or organism, whereas the asexual affords an increase in the number of individuals of the same kind. If the asexual method Reproduction. of reproduction alone existed, there would, so far as our knowledge at present extends, be no increase in the number of kinds of organism: no new individuality could arise. The first establishment of a new kind of individual by the sexual process is effected in a very similar manner in all Metazoa. The parent produces by a process of unequal fission, which takes place at a part of the body called the reproductive gland, a small living organism called the reproductive cell. There are always two kinds of reproductive cells, and these are generally produced by different animals called the male and female respectively (when they are produced by the same animal it is said to be hermaphrodite). The reproductive cell produced by the male is called the spermatozoon, and that produced by the female, the ovum. These two organisms agree in being small uninucleated masses of protoplasm, but differ considerably in form. They are without the organs of nutrition, &c., which characterize their parents, but the ovum nearly always possesses, stored up within its protoplasm, a greater or less quantity of vitelline matter or food-yolk, while the spermatozoon possesses in almost all cases the power of locomotion. The object with which these two minute and simple organisms are produced is to fuse with one another and give rise to one resultant uninucleated (for the nuclei fuse) organism or cell, which is called the zygote. This process of fusion between the two kinds of reproductive cells, which are termed gametes, is called conjugation: it is the process which is sometimes spoken of as the fertilization of the ovum, and its result is the establishment of a new individual. This new individual at first is simply a uninucleated mass of living matter, which always contains a certain amount of food-yolk, and is generally bounded by a delicate cuticular membrane called the vitelline membrane. In form the newly established zygote resembles the female gamete or ovum—so much so, indeed, that it is frequently called the ovum; but it must be clearly understood that although the bulk of its matter has been derived from the ovum, it consists of ovum and spermatozoon, and, as shown by its subsequent behaviour, the spermatozoon has quite as much to do with determining its vital properties as the ovum.

To the unaided eye the main difference between the newly formed zygotes of different species of animals is that of bulk, and this is due to the amount of food-yolk held in suspension in the protoplasm. The ovum of the fowl is 30 mm. in diameter, that of the frog 1·75 mm., while the ova of the rabbit and Amphioxus have a diameter of ·l mm. The food-yolk is deposited in the ovum as a result of the vital activity of its protoplasm, while the ovum is still a part of the ovary of the parent. It is an inert substance which is used as food later on by the developing embryo, and it acts as a dilutant of the living matter of the ovum. It has a profound influence on the subsequent developmental process. The newly formed zygotes of different species of animals have undoubtedly, as staved above, a certain family resemblance to one another; but however great this superficial resemblance may be, the differences must be most profound, and this fact becomes at once obvious when the properties of these remarkable masses of matter are closely investigated.

As in the case of so many other forms of matter, the more important properties of the zygote do not become apparent until it is submitted to the action of external forces. These forces constitute the external conditions of existence, and the properties which are called forth Causes of development. by their action are called the acquired characters of the organism. The investigation of these properties, particularly of those which are called forth in the early stages of the process, constitutes the science of Embryology. With regard to the manifestation of these properties, certain points must be clearly understood at the outset:—(1) If the zygote is withheld from the appropriate external influences, e.g. if a plant-seed be kept in a box free from moisture or at a low temperature, no properties are evolved, and the zygote remains apparently unchanged; (2) the acquisition of the properties which constitutes the growth and development of the organism proceeds in a perfectly definite sequence, which, so far as is known, cannot be altered; (3) just as the features of the growing organism change under the continued action of the external conditions, so the external conditions themselves must change as the organism is progressively evolved. With regard to this last change, it may be said generally that it is usually, if not always, effected by the organism itself, making use of the properties which it has acquired at earlier stages of its growth, and acting in response to the external conditions. There is, to use a phrase of Mr Herbert Spencer, a continuous adjustment between the external and internal relations. For every organism a certain succession of conditions is necessary if the complete and normal evolution of properties is to take place. Within certain limits, these conditions may vary without interfering with the normal evolution of the properties, though such variations are generally responded to by slight but unimportant variation of the properties (variation of acquired characters). But if the variation of the conditions is too great, the evolved properties become abnormal, and are of such a nature as to preclude the normal evolution of the organism; in other words, the action of the conditions upon the organism is injurious, causing abortions and, ultimately, death. For many organisms the conditions of existence are well known for all stages of life, and can be easily imitated, so that they can be reared artificially and kept alive and made to breed in confinement—e.g. the common fowl. But in a large number of cases it is not possible, through ignorance of the proper conditions, or on account of the difficulty of imitating them, to make the organism evolve all its properties. For instance, there are many marine larvae which have never been reared beyond a certain point, and there are some organisms which, even when nearly full-grown—a stage of life at which it is generally most easy to ascertain and imitate the natural conditions—will not live, or at any rate will not breed, in captivity. Of late years some naturalists have largely occupied themselves with experimental observation of the effects on certain organisms of marked and definite changes of the conditions, and the name of Developmental Mechanics (or Physiology of Development) has been applied to this branch of study (see below).

In normal fertilization, as a rule, only one spermatozoon fuses with the ovum. It has been observed in some eggs that a membrane, formed round the ovum immediately after the entrance of the spermatozoon, prevents the entrance of others. If than one spermatozoon enters, a corresponding Gametogeny. number of male pronuclei are formed, and the subsequent development, if it takes place at all, is abnormal and soon ceases. An egg by ill-treatment (influence of chloroform, carbonic acid, &c.) can be made to take more than one spermatozoon. In some animals it appears that several spermatozoa may normally enter the ovum (some Arthropoda, Selachians, Amphibians and Mammals), but of these only one forms a male pronucleus (see below), the rest being absorbed. Gametogeny is the name applied to the formation of the gametes, i.e. of the ova and spermatozoa. The cells of the reproductive glands are the germ cells (oögonia, spermatogonia). They undergo division and give rise to the progametes, which in the case of the female are sometimes called oöcytes, in the case of the male spermatocytes. The oöcytes are more familiarly called the ovarian ova. The nucleus of the oöcyte is called the germinal vesicle. The oöcyte (progamete) gives rise by division to the ovum or true gamete, the nucleus of which is called the female pronucleus. As a general rule the oöcyte divides unequally twice, giving rise to two small cells called polar bodies, and to the ovum. The first formed polar body frequently divides when the oöcyte undergoes its second and final division, so that there are three polar bodies as well as the ovum resulting from the division of the oöcyte or progamete. Sometimes the ovum arises from the oöcyte by one division only, and there is only one polar body (e.g. mouse, Sobotta, Arch. f. mikr. Anat., 1895, p. 15). The polar bodies are oval, but as a rule they are so small as to be incapable of fertilization. They may therefore be regarded as abortive ova. In one case, however (see Francotte, Bull. Acad. Belg. (3), xxxiii., 1897, p. 278), the first formed polar body is nearly as large as the ovum, and is sometimes fertilized and develops. The spermatogonia are the cells of the testis; these produce by division the spermatocytes (progametes), which divide and give rise to the spermatids. In most cases which have been investigated the divisions by which the spermatids arise from the spermatocytes are two in number, so