Page:EB1911 - Volume 10.djvu/107

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
DISEASES]
EYE
95


sight. In considering the pathology of the eye it may be remembered that (1) it is a double organ, while (2) either eye may have its own trouble.

1. The two eyes act together, under normal conditions, for all practical purposes exactly as if there were but one eye placed in the middle of the face. All impressions made upon either retina, to the one side of a vertical line through the centre, the fovea centralis, before giving rise to conscious perception cause a stimulation of the same area in the brain. Impressions formed simultaneously, for instance, on the right side of the right retina and on corresponding areas of the right side of the left retina, are conveyed to the same spots in the right occipital lobe of the brain. Pathological processes, therefore, which are localized in the right or left occipital lobes, or along any part of the course of the fibres which pass from the right or left optic tracts to these “visual centres,” cause defects in function of the right or left halves of the two retinae. Hemianopia, or half-blindness, arising from these pathological changes, is of very varying degrees of severity, according to the nature and extent of the particular lesion. The blind areas in the two fields of vision, corresponding to the outward projection of the paralysed retinal areas, are always symmetrical both in shape and degree. The central lesion may for instance be very small, but at the same time destructive to the nerve tissue. This will be revealed as a sector-shaped or insular symmetrical complete blindness in the fields of vision to the opposite side. Or a large central area, or an area comprising many or all of the nerve fibres which pass to the visual centre on one side, may be involved in a lesion which causes impairment of function, but no actual destruction of the nerve tissue. There is thus caused a symmetrical weakening of vision (amblyopia) in the opposite fields. In such cases the colour vision is so much more evidently affected than the sense of form that the condition has been called hemiachromatopsia or half-colour blindness. Hemianopia may be caused by haemorrhage, by embolism, by tumour growth which either directly involves the visual nerve elements or affects them by compression and by inflammation. Transitory hemianopia is rare and is no doubt most frequently of toxic origin.

The two eyes also act as if they were one in accommodating. It is impossible for the two eyes to accommodate simultaneously to different extents, so that where there is, as occasionally happens, a difference in focus between them, this difference remains the same for all distances for which they are adapted. In such cases, therefore, both eyes cannot ever be accurately adapted at the same time, though either may be alone. It often happens as a consequence that the one eye is used to receive the sharpest images of distant, and the other of near objects. Any pathological change which leads to an interference in the accommodating power of one eye alone must have its origin in a lesion which lies peripherally to the nucleus of the third cranial nerve. Such a lesion is usually one of the third nerve itself. Consequently, a unilateral accommodation paresis is almost invariably associated with pareses of some of the oculo-motor muscles. A bilateral accommodation paresis is not uncommon. It is due to a nuclear or more central cerebral disturbance. Unlike a hemianopia, which is mostly permanent, a double accommodation paresis is frequently transitory. It is often a post-diphtheritic condition, appearing alone or associated with other paresis.

Both eyes are also normally intimately associated in their movements. They move in response to a stimulus or a combination of stimuli, emanating from different centres of the brain, but one which is always equally distributed to the corresponding muscles in both eyes, so that the two lines of fixation meet at the succession of points on which attention is directed. The movements are thus associated in the same direction, to the right or left, upwards or downwards, &c. In addition, owing to the space which separates the two eyes, convergent movements, caused by stimuli equally distributed between the two internal recti, are required for the fixation of nearer and nearer-lying objects. These movements would not be necessary in the case of a single eye. It would merely have to accommodate. The converging movements of the double eye occur in association with accommodation, and thus a close connexion becomes established between the stimuli to accommodation and convergence. All combinations of convergent and associated movements are constantly taking place normally, just as if a single centrally-placed eye were moved in all directions and altered its accommodation according to the distance, in any direction, of the object which is fixed.

Associated and convergent movements may be interfered with pathologically in different ways. Cerebral lesions may lead to their impairment or complete abolition, or they may give rise to involuntary spasmodic action, as the result of paralysing or irritating the centres from which the various co-ordinated impulses are controlled or emanate. Lesions which do not involve the centres may prevent the response to associated impulses in one eye alone by interfering with the functional activity of one or more of the nerves along which the stimuli are conveyed. Paralysis of oculo-motor nerves is thus a common cause of defects of association in the movements of the double eye. The great advantage of simultaneous binocular vision—viz. the appreciation of depth, or stereoscopic vision—is thus lost for some, or it may be all directions of fixation. Instead of seeing singly with two eyes, there is then double-vision (diplopia). This persists so long as the defect of association continues, or so long as the habit of mentally suppressing the image of the faultily-directed eye is not acquired.

In the absence of any nerve lesions, central or other, interfering with their associated movements, the eyes continue throughout life to respond equally to the stimuli which cause these movements, even when, owing to a visual defect of the one eye, binocular vision has become impossible. It is otherwise, however, with the proper co-ordination of convergent movements. These are primarily regulated by the unconscious desire for binocular vision, and more or less firmly associated with accommodation. When one eye becomes blind, or when binocular vision for other reasons is lost, the impulse is gradually, as it were, unlearnt. This is the cause of divergent concomitant squint. Under somewhat similar conditions a degree of convergence, which is in excess of the requirements of fixation, may be acquired from different causes. This gives rise to convergent concomitant squint.

For Astigmatism, &c., see the article Vision.

2. Taking each eye as a single organ, we find it to be subject to many diseases. In some cases both eyes may be affected in the same way, e.g. where the local disease is a manifestation of some general disturbance. Apart from the fibrous coat of the eye, the sclera, which is little prone to disease, and the external muscles and other adnexa, the eye may be looked upon as composed of two elements, (a) the dioptric media, and (b) the parts more or less directly connected with perception. Pathological conditions affecting either of these elements may interfere with sight.

The dioptric media, or the transparent portions which are concerned in the transmission of light to, and the formation of images upon, the retina, are the following: the cornea, the aqueous humour, the crystalline lens and the vitreous humour. Loss of transparency in any of these media leads to blurring of the retinal images of external objects. In addition to loss of transparency the cornea may have its curvature altered by pathological processes. This necessarily causes imperfection of sight. The crystalline lens, on the other hand, may be dislocated, and thus cause image distortion.

The Cornea.—The transparency of the cornea is mainly lost by imflammation (keratitis), which causes either an infiltration of its tissues with leucocytes, or a more focal, more destructive ulcerative process.

Inflammation of the cornea may be primary or secondary, i.e. the inflammatory changes met with in the corneal tissue may be directly connected with one or more foci of inflammation in the cornea itself or the focus or foci may be in some other part of the eye. Only the very superficial forms of primary keratitis, those confined to the epithelial layer, leave no permanent change;