Page:EB1911 - Volume 10.djvu/704

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
HISTORY]
FORTIFICATION AND SIEGECRAFT
683


prevented the remains of the garrison from gaining the shelter of the donjon, and they had to lay down their arms.

Château Gaillard, designed by perhaps the greatest general of his time, exemplifies in its brief resistance the weak points of the designs of the 12th century. It is easy to understand how at each step gained by the besiegers the very difficulties which had been placed in the way of their further advance prevented the garrison from reinforcing strongly the points attacked.

Fig. 4.—Donjon, Château Gaillard.

In the 13th century many influences were at work in the development of castellar fortification. The experience of such sieges as that of Château Gaillard, and still more that gained in the Crusades, the larger garrisons at the disposal of the great feudal lords, and the importance of the interests which they had to protect in their towns, led to a freer style of design. We must also take note of an essential difference between the forms of attack preferred by the Roman soldiery and by the medieval chivalry. The former, who were artisans as well as soldiers, preferred in siege works the certain if laborious methods of breaching and mining. The latter, who considered all manual labour beneath them and whose only ideal of warfare was personal combat, affected the tower and its bridge, giving access to the top of the wall rather than the rat and battering-ram. They were also fond of surprises, which the bad discipline of the time favoured.

We find, therefore, important progress in enlarging the area of defence and in improving arrangements for flanking. The size and height of all works were increased. The keep of Coucy Castle, built in 1220, was 200 ft. high. Montargis Castle, also built about this time, had a central donjon and a large open enclosure, within which the whole garrison could move freely, to reinforce quickly any threatened point. The effect of flanking fire was increased by giving more projection to the towers, whose sides were in some cases made at right angles to the curtain walls.

We find also a tendency, the influence of which lasted long after medieval times, towards complexity and multiplication of defences, to guard against surprise and localize successful assaults. Great attention was paid to the “step by step” defence. Flanking towers were cut off from their walls and arranged for separate resistance. Complicated entrances with traps and many doors were arranged. Almost all defence was from the tops of the walls and towers, the loopholes on the lower storeys being mainly for light and air and reconnoitring. Machicouli galleries (for vertical defence) were protected either by stone walls built out on corbels, or by strong timber hoardings built in war time, for which the walls were prepared beforehand by recesses left in the masonry. Loopholes and crenelles were protected by shutters. Great care and much ingenuity were expended on details of all kinds.

Already in the 12th century the engineers of the defence had made provision for countermining, by building chambers and galleries at the base of the towers and walls. Further protection for the towers against the pioneer attack was given by carrying out the masonry in front of the tower in a kind of projecting horn. This was found later to have the further advantages of doing away with the dead ground in front of the tower unseen from the curtain, and of increasing the projection and therefore the flanking power of the tower itself. The arrangement is seen in several of the towers at Carcassonne, and has in it the germ of the idea of the bastion.


Fig. 5.—Plan of Carcassonne, 13th century.

The defences of Carcassonne, remodelled in the latter half of the 13th century on the old Visigoth foundations, exemplify some of the best work of the period. Figs. 5 and 6 (reproduced from Viollet-le-Duc) show the plan of the defences of the town and castle, and a bird’s-eye view of the castle with its two barbicans. The thick black line shows the main wall; beyond this are the lists and then the moat. It will be noted that the wall of the lists as well as the main wall is defended by towers. There are only two gates. That on the east is defended by two great towers and a semicircular barbican. The gate of the castle, on the west, has a most complicated approach defended by a labyrinth of gates and flanking walls, which cannot be shown on this small scale, and beyond these is a huge circular barbican in several storeys, capable of holding 1500 men. On the side of the town the castle is protected by a wide moat, and the entrance is masked by another large semicircular barbican. An interesting feature of the general arrangement is the importance which the lists have assumed. The slight wooden barricade of older times has developed into a wall with towers; and the effect is that the besieger, if he gains a footing in the lists, has a very narrow space in which to work the engines of attack. The castle, after the Roman fashion, adjoins the outer wall of the town, so that there may be a possibility of communicating with a relieving force from outside after the town has fallen. There were also several posterns, small openings made in the wall at some height above the ground, for use with rope ladders.

The siegecraft of the period was still that of the ancients. Mining was the most effective form of attack, and the approach to the walls was covered by engines throwing great stones against the hoardings of the parapets, and by cross-bowmen who were sheltered behind light mantlets moved on wheels. Barrels of burning pitch and other incendiary projectiles were thrown as before; and at one siege we read of the carcasses of dead horses and barrels of sewage being thrown into the town to breed pestilence, which had the effect of forcing a capitulation.

With all this the attack was inferior to the defence. As Professor C. W. C. Oman has pointed out, the mechanical application of the three powers of tension, torsion and counterpoise (in the missile engines) had its limits. If these engines were enlarged they grew too costly and unwieldy. If they were multiplied it was impossible on account of their short range and great bulk to concentrate the fire of enough of them on a single portion of the wall.

It is difficult to give anything like an accurate account, in a small space, of the changes in fortification which took place in the first two centuries after the introduction of gunpowder. The number of existing fortifications that had to be modified was infinite, so also was the number of Introduction of gunpowder. attempted solutions of the new problems. Engineers had not yet begun to publish descriptions of their “systems”; also the new names and terms which came into use with the new works were spread over Europe by engineers of different countries, and adopted into new languages without much accuracy.

Artillery was in use for some time before it began to have any effect on the design of fortification. The earliest cannon threw so very light a projectile that they had no effect on masonry and