Page:EB1911 - Volume 11.djvu/391

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
FÜSSEN—FUST
373

fact that in strong and viscous solutions the state of equilibrium is but slowly attained, is the probable explanation of the remarkable discrepancies existing in many recorded data of solubility.

Transition Points of Hydrates.

Na2CrO4·10H2O  19.9°   NaBr·2H20 50.7°
Na2SO4·10H2O 32.4° MnCl2·4H2O 57.8°
Na2CO3·10H2O 35.1° Na3PO4·12H2O  73.4°
Na2S2O3·5H2O 48.0° Ba(OH)2·8H2O 77.9°

The transition points of the hydrates given in the above list (Richards, Proc. Amer. Acad., 1899, 34, p. 277) afford well-marked constant temperatures which can be utilized as fixed points for experimental purposes.

9. Formation of Mixed Crystals.—An important exception to the general type already described, in which the addition of a dissolved substance lowers the F.P. of the solvent, is presented by the formation of mixed crystals, or “solid solutions,” in which the solvent and solute occur mixed in varying proportions. This isomorphous replacement of one substance by another, in the same crystal with little or no change of form, has long been known and studied in the case of minerals and salts, but the relations between composition and melting-point have seldom been investigated, and much still remains obscure. In this case the process of freezing does not necessitate the performance of work of separation of the constituents of the solution, the F.P. is not necessarily depressed, and the effect cannot be calculated by the usual formula for dilute solutions. One of the simplest types of F.P. curve which may result from the occurrence of mixed crystals is illustrated by the case of alloys of gold and silver, or gold and platinum, in which the F.P. curve is nearly a straight line joining the freezing-points of the constituents. The equilibrium between the solid and liquid, in both of which the two metals are capable of mixing in all proportions, bears in this case an obvious and close analogy to the equilibrium between a mixed liquid (e.g. alcohol and water) and its vapour. In the latter case, as is well known, the vapour will contain a larger proportion of the more volatile constituent. Similarly in the case of the formation of mixed crystals, the liquid should contain a larger proportion of the more fusible constituent than the solid with which it is in equilibrium. The composition of the crystals which are being deposited at any moment will, therefore, necessarily change as solidification proceeds, following the change in the composition of the liquid, and the temperature will fall until the last portions of the liquid to solidify will consist chiefly of the more fusible constituent, at the F.P. of which the solidification will be complete. If, however, as seems to be frequently the case, the composition of the solid and liquid phases do not greatly differ from each other, the greater part of the solidification will occur within a comparatively small range of temperature, and the initial F.P. of the alloy will be well marked. It is possible in this case to draw a second curve representing the composition of the solid phase which is in equilibrium with the liquid at any temperature. This curve will not represent the average composition of the crystals, but that of the outer coating only which is in equilibrium with the liquid at the moment. H. W. B. Roozeboom (Zeit. Phys. Chem. xxx. p. 385) has attempted to classify some of the possible cases which may occur in the formation of mixed crystals on the basis of J. W. Gibbs’s thermodynamic potential, the general properties of which may be qualitatively deduced from a consideration of observed phenomena. But although this method may enable us to classify different types, and even to predict results in a qualitative manner, it does not admit of numerical calculation similar to equation (8), as the Gibbs’s function itself is of a purely abstract nature and its form is unknown. There is no doubt that the formation of mixed crystals may explain many apparent anomalies in the study of F.P. curves. The whole subject has been most fruitful of results in recent years, and appears full of promise for the future.

For further details in this particular branch the reader may consult a report by Neville (Brit. Assoc. Rep., 1900), which contains numerous references to original papers by Roberts-Austen, Le Chatelier, Roozeboom and others. For the properties of solutions see Solution. (H. L. C.) 


FÜSSEN, a town of Germany, in the kingdom of Bavaria, at the foot of the Alps (Tirol), on the Lech, 2500 ft. above the sea, with a branch line to Oberdorf on the railway to Augsburg. Pop. 4000. It has six Roman Catholic churches, a Franciscan monastery and a castle. Rope-making is an important industry. The castle, lying on a rocky eminence, is remarkable for the peace signed here on the 22nd of April 1745 between the elector Maximilian III., Joseph of Bavaria and Maria Theresa. Two miles to the S.E., immediately on the Austrian frontier, romantically situated on a rock overlooking the Schwanensee, is the magnificent castle of Hohenschwangau, and a little to the north, on the site of an old castle, that of Neuschwanstein, built by Louis II. of Bavaria.

See H. Feistle, Füssen und Umgebung (1898).


FUST, JOHANN (?–1466), early German printer, belonged to a rich and respectable burgher family of Mainz, which is known to have flourished from 1423, and to have held many civil and religious offices. The name was always written Fust, but in 1506 Johann Schöffer, in dedicating the German translation of Livy to the emperor Maximilian, called his grandfather Faust, and thenceforward the family assumed this name, and the Fausts of Aschaffenburg, an old and quite distinct family, placed Johann Fust in their pedigree. Johann’s brother Jacob, a goldsmith, was one of the burgomasters in 1462, when Mainz was stormed and sacked by the troops of Count Adolf of Nassau, on which occasion he seems to have perished (see a document, dated May 8, 1463, published by Wyss in Quartalbl. des hist. Vereins für Hessen, 1879, p. 24). There is no evidence that, as is commonly asserted, Johann Fust was a goldsmith, but he appears to have been a money-lender or banker. On account of his connexion with Gutenberg (q.v.), he has been represented by some as the inventor of printing, and the instructor as well as the partner of Gutenberg, by others as his patron and benefactor, who saw the value of his discovery and supplied him with means to carry it out, whereas others paint him as a greedy and crafty speculator, who took advantage of Gutenberg’s necessity and robbed him of the fruits of his invention. However this may be, the Helmasperger document of November 6, 1455, shows that Fust advanced money to Gutenberg (apparently 800 guilders in 1450, and another 800 in 1452) for carrying on his work, and that Fust, in 1455, brought a suit against Gutenberg to recover the money he had lent, claiming 2020 (more correctly 2026) guilders for principal and interest. It appears that he had not paid in the 300 guilders a year which he had undertaken to furnish for expenses, wages, &c., and, according to Gutenberg, had said that he had no intention of claiming interest. The suit was apparently decided in Fust’s favour, November 6, 1455, in the refectory of the Barefooted Friars of Mainz, when Fust made oath that he himself had borrowed 1550 guilders and given them to Gutenberg. There is no evidence that Fust, as is usually supposed, removed the portion of the printing materials covered by his mortgage to his own house, and carried on printing there with the aid of Peter Schöffer, of Gernsheim (who is known to have been a scriptor at Paris in 1449), to whom, probably about 1455,[1] he gave his only daughter Dyna or Christina in marriage. Their first publication was the Psalter, August 14, 1457, a folio of 350 pages, the first printed book with a complete date, and remarkable for the beauty of the large initials printed each in two colours, red and blue, from types made in two pieces.[2] The Psalter was reprinted with the same types, 1459 (August 29), 1490, 1502 (Schöffer’s last publication) and 1516. Fust and Schöffer’s other works are given below.[3] In 1464 Adolf

  1. This date is uncertain; some place the marriage in 1453 or soon after, others about 1464. It is probable that Fust alluded to this relationship when he spoke of Schöffer as pueri mei in the colophons of Cicero’s De officiis of 1465 and 1466.
  2. This method was patented in England by Solomon Henry in 1780, and by Sir William Congreve in 1819.
  3. (3) Durandus, Rationale divinorum officiorum (1459), folio, 160 leaves; (4) the Clementine Constitutions, with the gloss of Johannes Andreae (1460), 51 leaves; (5) Biblia Sacra Latina (1462), folio, 2 vols., 242 and 239 leaves, 48 lines to a full page; (6) the Sixth Book of Decretals, with Andreae’s gloss, 17th December 1465, folio, 141 leaves; (7) Cicero, De officiis (1465), 4to, 88 leaves, the first edition of a Latin classic and the first book containing Greek characters, while in the colophon Fust for the first time calls Schöffer “puerum suum”; (8) the same, 4th February 1466; (9) Grammatica rhytmica (1466), folio, 11 leaves. They also printed in 1461–1462 several papal bulls, proclamations of Adolf of Nassau, &c. Nothing is known to have appeared for three years after the storming and capture of Mainz in 1462.