Page:EB1911 - Volume 18.djvu/669

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
MODEL
639


an intersection of the surface with itself; the elucidation of such singularities is of fundamental importance in modern mathematics.

In physical science, again, models that are of unchangeable form are largely employed. For example, the operation of the refraction of light in crystals can be pictured if we imagine a point in the centre of the crystal whence light is dispersed in all directions. The aggregate of the places at which the light arrives at any instant after it has started is called the wave-front. This surface consists of two cups or sheets fitting closely and exactly one inside the other. The two rays into which a single ray is broken are always determined by the points of contact of certain tangent-planes drawn to those sheets. With crystals possessing two axes these wave-surfaces display peculiar singularities in the above sense of the term, in that the inner sheet has four protuberances, while the outer has four funnel-like depressions, the lowest point of each depression meeting the highest point of each protuberance. At each of these funnels there is a tangent-plane that touches not in a single point, but in a circle bounding the depression, so that the corresponding ray of light is refracted, not into two rays, but into a whole cone of light the so-called conical refraction theoretically predicted by Sir W. R. Hamilton and experimentally detected by Humphrey Lloyd. These conditions, which it is difficult to adequately express in language, are self-evident so soon as the wave-surface formed in plaster lies before our eyes. In thermodynamics, again, similar models serve, among other purposes, for the representation of the surfaces which exhibits the relation between the three thermodynamic variables of a body, e.g. between its temperature, pressure and volume. A glance at the model of such a thermodynamic surface enables the behaviour of a particular substance under the most varied conditions to be immediately realized. When the ordinate intersects the surface but once a single phase only of the body is conceivable, but where there is a multiple intersection various phases are possible, which may be liquid or gaseous. On the boundaries between these regions lie the critical phases, where transition occurs from one type of phase into the other. If for one of the elements a quantity which occurs in calorimetry be chosen—for example, entropy—information is also gained about the behaviour of the body when heat is taken in or abstracted.

After the stationary models hitherto considered, come the manifold forms of moving models, such as are used in geometry, to show the origin of geometrical figures from the motion of others—e.g. the origin of surfaces from the motion of lines. These include the thread models, in which threads are drawn tightly between movable bars, cords, wheels, rollers, &c. In mechanics and engineering an endless variety of working models are employed to convey to the eye the working either of machines as a whole, or of their component and subordinate parts. In theoretical mechanics models are often used to exhibit the physical laws of motion in interesting or special cases—e.g. the motion of a falling body or of a spinning-top, the movement of a pendulum on the rotating earth, the vortical motions of fluids, &c. Akin to these are the models which execute more or less exactly the hypothetical motions by which it is sought to explain various physical phenomena—as, for instance, the complicated wave-machines which present the motion of the particles in waves of sound (now ascertained with fair accuracy), or the more hypothetical motion of the atoms of the aether in waves of light.

The varying importance which in recent times has been attached to models of this kind is intimately connected with the changes which have taken place in our conceptions of nature. The first method by which an attempt was made to solve the problem of the universe was entirely under the influence of Newton’s laws. In analogy Theories of Nature. to his laws of universal gravitation, all bodies were conceived of as consisting of points of matter—atoms or molecules—to which was attributed a direct action at a distance. The circumstances of this action at a distance, however, were conceived as differing from those of the Newtonian law of attraction, in that they could explain the properties not only of solid elastic bodies, but also those of fluids, both liquids and gases. The phenomena of heat were explained by the motion of minute particles absolutely invisible to the eye, while to explain those of light it was assumed that an impalpable medium, called luminiferous aether, permeated the whole universe; to this were attributed the same properties as were possessed by solid bodies, and it was also supposed to consist of atoms, although of a much finer composition. To explain electric and magnetic phenomena the assumption was made of a third species of matter—electric fluids which were conceived of as being more of the nature of fluids, but still consisting of infinitesimal particles, also acting directly upon one another at a distance. This first phase of theoretical physics may be called the direct one, in that it took as its principal object the investigation of the internal structure of matter as it actually exists. It is also known as the mechanical theory of nature, in that it seeks to trace back all natural phenomena to motions of infinitesimal particles, i.e. to purely mechanical phenomena. In explaining magnetic and electrical phenomena it inevitably fell into somewhat artificial and improbable hypotheses, and this induced J. Clerk Maxwell, adopting the ideas of Michael Faraday, to propound a theory of electric and magnetic phenomena which was not only new in substance, but also essentially different in form. If the molecules and atoms of the old theory were not to be conceived of as exact mathematical points in the abstract sense, then their true nature and form must be regarded as absolutely unknown, and their groupings and motions, required by theory, looked upon as simply a process having more or less resemblance to the workings of nature, and representing more or less exactly certain aspects incidental to them. With this in mind, Maxwell propounded certain physical theories which were purely mechanical so far as they proceeded from a conception of purely mechanical processes. But he explicitly stated that he did not believe in the existence in nature of mechanical agents so constituted, and that he regarded them merely as means by which phenomena could be reproduced, bearing a certain similarity to those actually existing, and which also served to include larger groups of phenomena in a uniform manner and to determine the relations that held in their case. The question no longer being one of ascertaining the actual internal structure of matter, many mechanical analogies or dynamical illustrations became available, possessing different advantages; and as a matter of fact Maxwell at first employed special and intricate mechanical arrangements, though later these became more general and indefinite. This theory, which is called that of mechanical analogies, leads to the construction of numerous mechanical models. Maxwell himself and his followers devised many kinematic models, designed to afford a representation of the mechanical construction of the ether as a whole as well as of the separate mechanisms at work in it: these resemble the old wave-machines, so far as they represent the movements of a purely hypothetical mechanism. But while it was formerly believed that it was allowable to assume with a great show of probability the actual existence of such mechanisms in nature, yet nowadays philosophers postulate no more than a partial resemblance between the phenomena visible in such mechanisms and those which appear in nature. Here again it is perfectly clear that these models of wood, metal and cardboard are really a continuation and integration of our process of thought; for, according to the view in question, physical theory is merely a mental construction of mechanical models, the working of which we make plain to ourselves by the analogy of mechanisms we hold in our hands, and which have so much in common with natural phenomena as to help our comprehension of the latter.

Although Maxwell gave up the idea of making a precise investigation into the final structure of matter as it actually is, yet in Germany his work, under G. R. Kirchhoff’s lead, was carried still further. Kirchhoff defined his own aim as being to describe, not to explain, the world of phenomena; but as he leaves the means of description open his theory differs little from Maxwell’s, so soon as recourse is had to description by