Page:EB1911 - Volume 28.djvu/599

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
WHEAT
579


the fertilization of the flowers of one description of wheat by the pollen of another. This has been attempted by Shireff, Le Couteur, Maund and others in the past, and more recently by H. de Vilmorin and Messrs Carter. Under natural circumstances wheat is self-fertilized: that is to say, the pollen of any given flower impregnates the stigma and ovule of the same flower; the glumes and coverings of the flower being tightly pressed round the stamens and stigmas in such a way as to prevent the access of insects and to ensure the deposit of the pollen upon the stigmas of the same flower. This process of self-fertilization is the usual method, and no doubt keeps the variety true or unmixed; but the occasional presence of varieties in a wheat-field shows that cross-fertilization is sometimes secured. The stamens of the wheat plant may frequently be seen protruding beyond the glumes, and their position might lead to the inference that cross-fertilization was the rule; but on closer examination it will be found that the anthers are empty or nearly so, and that they are not protruded till after they have deposited the pollen upon the stigma. The separation of the glumes, which occurs at the time of fertilization, and which permits the egress of the useless stamens after that operation, occurs only under certain conditions of temperature, when the heat, in fact, is sufficient to cause the lodicules of the flower to become turgid and thus to press apart the glumes. A temperature of about 75° F. is found by Messrs Carter to be the most favourable. From what has been said it will be evident that the artificial fertilization of wheat is a very delicate operation. The glumes have to be separated and the anthers cut away before the pollen is fully formed, care being taken at the same time not to injure the stigma, and specially not to introduce, on the scissors or otherwise, any pollen except that of the variety desired. De Vilmorin's experiments have shown that all the varieties will intercross, and that even such a distinct form as the Polish is no exception. From this he concludes that all the forms have originated from one stock and are to be comprised within one species. In the progeny of these crossed wheats, especially in the second generation, much variation and difference of character is observable—a phenomenon commonly noticed in the descendants from crosses and hybrids, and styled by Naudin “irregular variation.” Sometimes characteristics appear in the crossed wheats which are not found in the parent varieties, although they occur in other wheats. Thus, De Vilmorin records the presence of turgid wheats among seedlings raised from a common wheat fertilized with the pollen of a hard variety, and spelt wheats among the descendants of a common crossed with a turgid wheat.

The production of wheat, with the use of wheat bread, has increased enormously since the extension of railways has made possible the transportation of grain for great distances (see Grain Trade). Of late years the increase of production has been most notable in southern Russia, Argentina, Australia, India and North America.

American Wheat-Farming.[1]—That wonderful agricultural region, extending from the international line on the north to the 37th parallel, and from the Atlantic Ocean to the 100th meridian, and comprising 26 states, produces 76% of the American wheat crop. This region, which contains only 30% of the land surface of the country, but embraces 60% of its total farm area and 70% of its improved farm acreage, is the greatest cereal-producing region of the world. Besides wheat, it produces 82% of the total corn crop, 91% of the total oat crop and 83% of the total hay crop of the United States. The methods pursued in the eastern portion of this region are similar to those used in other parts of the world; but in the north-western portion wheat-growing is carried on on a gigantic scale, and by methods almost unknown anywhere else. The best illustration of the great or “bonanza” wheat farms, as they are called, are found along the Red river (of the North), where it flows between the states of North Dakota and Minnesota.

The wheat grown in the United States is of two distinct kinds. One is the large-kernel winter wheat of the Eastern states, the other is the hard spring wheat. The “blue stem” or the “Scotch-Fife” are native varieties of the latter kind grown in Minnesota and the two Dakotas. For flour-making this wheat is considered the best in the world. During the season of 1899 the product of hard spring wheat amounted to nearly 250,000,000 bushels, or two-fifths of the entire wheat product of the United States. Of this, Minnesota and the two Dakotas alone produced 200,000,000 bushels. Minnesota is the greatest wheat-producing state in the Union. Her fields in 1899 covered 5,000,000 acres, and she produced nearly 80,000,000 bushels, which is twice the entire production of all Australia, and more than that of Great Britain and Ireland put together. In Minnesota and the Dakotas the farms are devoted almost exclusively to wheat growing. Many of them contain from 3000 to 10,000 acres. The country is a very level one, making it possible to use all kinds of machinery with great success. As there are no mountains or swamps, there is here very little waste land, and every square foot of the vast wheat fields can be made productive.

The first characteristic of a “bonanza” wheat farm is the machinery. The smallest agricultural implement used upon Bonanza farms. them is a plough, and the largest is the elevator. A hoe or a spade is almost unknown. Between these two there are machines of all sizes adapted to the needs of the particular work. Let us assume the conditions prevailing upon a bonanza farm of 5000 acres, and briefly describe the process of wheat production from the ploughing of the land to the delivery of the grain in the final market. These great wheat farms were established upon new lands sold directly to capitalists by the railroads. The lands became the property of the railroads largely through government grants, and they attracted capitalists, who bought them in large bodies and at low prices. The improvements made upon them consist of the cheap wooden dwellings for the managers, dormitories and dining-halls for the men, stables for the horses, and sheds and workshops for repairing machinery. Very little of the land is under fence. Since the desirable lands of the country have been occupied, the prices of these lands have advanced slowly, with the result that the big farms are being divided up into small holdings. After a generation or two, if land continues to rise in the market as it has recently, the bonanza farms will become a thing of the past. At present the best of these lands in the valley of the Red river (of the North) are worth from $25 to $30 an acre. The improvements upon them add about $5 an acre more. A farm is not considered a big one unless it contains from 2000 to 10,000 acres at least. There are, of course, many small farmers owning from two to five sections (640 acres in each section), but their methods are more like those of the small farmers in the eastern United States or on the continent of Europe. It is necessary to own a large body of land in order to be able to use the machinery and methods here described. It is hard to convey a just notion of the size of these farms. They stretch away as far as the eye can reach in every direction, making it difficult even for the visitor to conceive their size. The distances across wheat fields are so great that even horseback communication is too slow. The farms are separated into divisions, and lodging-houses and dining-halls and barns are scattered over them, so as to keep the workmen and teams near the scene of their labour. The men living at one end of the farm may not see those at the other for months at a time. Even then it is necessary to take the meals to the men in the fields rather than allow them to walk or ride to the dining-halls. It is not an unusual thing for a working crew to find themselves at the dinner hour 2 m. from their hall.

First, after burning the old straw of the previous year—which is real labour in itself, so enormous is its bulk—comes the ploughing. Ploughing. This begins in October. The plough used has a 16-in. share, turns two furrows, and is drawn by five horses. Each plough covers about 250 acres in a season, travelling an average of 20 m. a day. The ploughing begins in October, and continues a month or six weeks, according to the season. The ploughs are driven in “gangs” under the eye of a superintendent, who rides with them. From eight to ten of these ploughs follow each other around the vast section. If one stands a few rods ahead of them they seem to be following one another in a line; but, if one stands to the right of the “gang,” one sees that the line is broken, and that the second plough is a width farther in the field than the leader, and so on for the entire number. Experience shows that it costs about 70 cents an acre to plough the land in this way. About forty men are employed upon a farm of 5000 acres during the ploughing season. The men are paid by the month, and receive about $25, including their board. They breakfast at five o'clock, take an hour for their dinner at noon—usually in the field—and have their supper at seven. At the end of the ploughing season these particular men are usually discharged. Only eight or ten are kept on a farm of this size throughout the year. The other men go back to their homes or to the factories in the cities, where they await the harvesting and threshing season. The eight or ten who remain upon the farm are employed in doing odd jobs, such as overhauling machinery, or helping the carpenter and blacksmith, or looking after the horses. The wheat region is a country of heavy snows, and of severe, dry cold; but when March comes the snows begin to melt away, and by April the ploughed land is dry enough for


  1. For Canadian Wheat see Canada § Agriculture.