Page:History of botany (Sachs; Garnsey).djvu/374

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
354
Nägeli's theory of molecular structure
[BOOK II.


starch-grain very poor in substance, but showing exactly the original stratification and giving no blue colour with iodine; this Nägeli named starch-cellulose. It followed from this behaviour, that two chemically different molecules lie everywhere side by side in the grain of starch, much as if red and yellow bricks had been so employed to build a house, that when all the yellow bricks were afterwards removed, the red alone would still represent the wall in its original form as a whole though in a looser condition. He arrived at similar results in the case of the crystalloid proteid bodies, which Theodor Hartig discovered, and Radlkofer had examined crystallographically, Maschke chemically. Since it is possible in the same manner to extract the so-called incrusting matters from cell-membranes without essentially altering their form, and to obtain ash-skeletons of them which imitate all the delicacies of their structure, the comparison adopted above may also be applied in still more complex manner to the molecular structure of these membranes ; and indeed many considerations lead to the belief, that the ideas which Nägeli obtained from starch-grains may be applied with some modifications to the structure of protoplasm also.

We said that the appearances in the starch-grains led Nägeli to suppose that their molecules are not spherical but polyhedral, and the question naturally arose whether they are really crystalline. The point could be settled by the use of polarised light, to which different observers had already turned their attention. Erlach in 1847, Ehrenberg in 1849, had employed polarised light for the determination of microscopic objects, without however arriving at any conclusions on the subject of molecular structure; Schacht indeed at a later time declared such observations to be a pretty amusement, but without scientific value. But soon we have once more one of von Mohl's careful and solid investigations ('Botanische Zeitung,' 1858), in which with the aid of technical improvements in the apparatus he arrived at conclusions respecting the nature