Page:History of botany (Sachs; Garnsey).djvu/89

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Chap. II.]
from Cesalpino to Linnaeus.
69

knew how to adopt all that was good and true in the works of his predecessors, and to criticise and complete them from his own observations, but could also joyfully acknowledge the services of others, and combine their results and his own into a harmonious whole. He wrote many botanical works; but none display his character as a man and a naturalist better than his comprehensive 'Historia Plantarum,' published in three large folio volumes without plates in the period from 1686 to 1704. This work contains a series of descriptions of all plants then known; but the first volume commences with a general account of the science in fifty-eight pages, which, printed in ordinary size, would itself make a small volume, and which treats of the whole of theoretic botany in the style of a modern text-book. If morphology, anatomy, and physiology, in which latter subject he relies on the authority of Malpighi and Grew, are not kept strictly apart in his exposition, yet it is easy to separate the morphological part, and his theory of systematic botany is in fact given separately. Jung's definitions of the subject-matter of each of the chapters on morphology are first given, and Ray then adds his own remarks, in which he criticises, expands, and supplements those of his predecessor. Omitting all that is not his own, and the anatomical and physiological portions, we will describe some of the more important results of his studies on system. First and foremost Ray adopted the idea which Grew had conceived, but in a very clumsy form, that difference of sex prevails in the vegetable kingdom, and hence the flower had a different meaning and importance for him from what it had had for his predecessors, though his views on the subject were still indistinct. Ray perceived more clearly than Cesalpino that many seeds contain not only an embryo but also a substance, which he calls 'pulpa' or 'medulla,' and which is now known as the endosperm, and that the embryo has not always two cotyledons, but sometimes only one or none; and though he was not quite clear as regards the distinction, which we now express by the words dicotyle-