Page:Makers of British botany.djvu/110

From Wikisource
Jump to navigation Jump to search
This page has been validated.
80
STEPHEN HALES

the track and had he known as much as Priestley it would not have been phlogiston that kept him from becoming a Cavendish or Lavoisier. What chiefly concerns us however is the bearing of Hales' chemical work on his theories of nutrition. He concludes that "air makes a very considerable part of the substance of Vegetables," and goes on to say (p. 211) that "many of these particles of air" are "in a fixt state strongly adhering to and wrought into the substance of plants[1]. He has some idea of the instability of complex substances and of the importance of the fact, for he says[2] that "if all the parts of matter were only endued with a strongly attracting power, [the] whole [of] nature would then become one unactive cohering lump." This may remind us of Herbert Spencer's words: "Thus the essential characteristic of living organic matter, is that it unites this large quantity of contained motion with a degree of cohesion that permits temporary fixity of arrangement," First Principles, § 103. With regard to the way in which plants absorb and fix the "air" which he finds in their tissues, Hales is not clear; he does not in any way distinguish between respiration and assimilation. But as I have already said he definitely asserts that plants draw "sublimed and exalted food" from the air.

As regards the action of light on plants, he suggests (p. 327) that "by freely entering the expanded surfaces of leaves and flowers" light may "contribute much to the ennobling principles of vegetation." He goes on to quote Newton (Opticks, query 30): "The change of bodies into light, and of light into bodies is very conformable to the course of nature, which seems delighted with transformations." It is a problem for the antiquary to determine whether or no Swift took from Newton the idea of bottling and recapturing sunshine as practised by the philosopher of Lagado. He could hardly have got it from Hales since Gulliver's Travels was published in 1726, a year before Vegetable Staticks. Timiriazeff, in his Croonian Lecture[3], was the first to see the connexion between photosynthesis and the Lagado research.

  1. He speaks here merely of the apples used in a certain experiment, but it is clear that he applies the conclusion to other plants.
  2. Vegetable Staticks, p. 313. It should be noted that Hales speaks of organic as well as inorganic substances.
  3. Proc. R. Soc. LXXII., p. 30, 1903.