Page:Newton's Principia (1846).djvu/411

From Wikisource
Jump to navigation Jump to search
This page has been validated.
Book III.]
of natural philosophy.
405

in his Astronomy, published at the beginning of the year 1676, explained more fully out of the letters I sent him. The utmost satellite of Saturn seems to revolve about its axis with a motion like this of the moon, respecting Saturn continually with the same face; for in its revolution round Saturn, as often as it comes to the eastern part of its orbit, it is scarcely visible, and generally quite disappears; which is like to be occasioned by some spots in that part of its body, which is then turned towards the earth, as M. Cassini has observed. So also the utmost satellite of Jupiter seems to revolve about its axis with a like motion, because in that part of its body which is turned from Jupiter it has a spot, which always appears as if it were in Jupiter's own body, whenever the satellite passes between Jupiter and our eye.


PROPOSITION XVIII. THEOREM XVI.

That the axes of the planets are less than the diameters drawn perpendicular to the axes.

The equal gravitation of the parts on all sides would give a spherical figure to the planets, if it was not for their diurnal revolution in a circle. By that circular motion it comes to pass that the parts receding from the axis endeavour to ascend about the equator; and therefore if the matter is in a fluid state, by its ascent towards the equator it will enlarge the diameters there, and by its descent towards the poles it will shorten the axis. So the diameter of Jupiter (by the concurring observations of astronomers) is found shorter betwixt pole and pole than from east to west. And, by the same argument, if our earth was not higher about the equator than at the poles, the seas would subside about the poles, and, rising towards the equator, would lay all things there under water.


PROPOSITION XIX. PROBLEM III.

To find the proportion of the axis of a planet to the diameter, perpendicular thereto.

Our countryman, Mr. Norwood, measuring a distance of 905751 feet of London measure between London and York, in 1635, and observing the difference of latitudes to be 2° 28′, determined the measure of one degree to be 367196 feet of London measure, that is 57300 Paris toises. M. Picart, measuring an arc of one degree, and 22′ 55″ of the meridian between Amiens and Malvoisine, found an arc of one degree to be 57060 Paris toises. M. Cassini, the father, measured the distance upon the meridian from the town of Collioure in Roussillon to the Observatory of Paris; and his son added the distance from the Observatory to the Citadel of Dunkirk. The whole distance was 486156½ toises and the difference of the latitudes of Collioure and Dunkirk was 8 degrees, and 31′