Page:Newton's Principia (1846).djvu/426

From Wikisource
Jump to navigation Jump to search
This page has been validated.
420
the mathematical principles
[Book III.

4th Prop. of this Book we found, that, if both earth and moon were revolved about their common centre of gravity, the mean distance of the one from the other would be nearly 60½ mean semi-diameters of the earth; and the force by which the moon may be kept revolving in its orbit about the earth in rest at the distance PT of 60½ semi-diameters of the earth, is to the force by which it may be revolved in the same time, at the distance of 60 semi-diameters, as 60½ to 60: and this force is to the force of gravity with us very nearly as 1 to 60 60. Therefore the mean force ML is to the force of gravity on the surface of our earth as 1 60½ to 60 60 60 1782940, or as 1 to 638092,6; whence by the proportion of the lines TM, ML, the force TM is also given; and these are the forces with which the sun disturbs the motions of the moon.   Q.E.I.


PROPOSITION XXVI. PROBLEM VII.

To find the horary increment of the area which the moon, by a radius drawn to the earth, describes in a circular orbit.

We have above shown that the area which the moon describes by a radius drawn to the earth is proportional to the time of description, excepting in so far as the moon's motion is disturbed by the action of the sun; and here we propose to investigate the inequality of the moment, or horary increment of that area or motion so disturbed. To render the calculus more easy, we shall suppose the orbit of the moon to be circular, and neglect all inequalities but that only which is now under consideration; and, because of the immense distance of the sun, we shall farther suppose that the lines SP and ST are parallel. By this means, the force LM will be always reduced to its mean quantity TP, as well as the force TM to its mean quantity 3PK. These forces (by Cor. 2 of the Laws of Motion) compose the force TL; and this force, by letting fall the perpendicular LE upon the radius TP, is resolved into the forces TE, EL; of which the force TE, acting constantly in the direction of the radius TP, neither accelerates nor retards the description of the area TPC made by that radius TP; but EL, acting on the radius TP in a perpendicular direction, accelerates or retards the description of the area in proportion as it accelerates or retards the moon.