Page:Newton's Principia (1846).djvu/545

From Wikisource
Jump to navigation Jump to search
This page has been validated.
the system of the world.
539

the mouth of the Thames, and London Bridge, spending twelve hours in this passage. But farther; the propagation of the tides may be obstructed even by the channels of the ocean itself, when they are not of depth enough, for the flood happens at the third lunar hour in the Canary islands; and at all those western coasts that lie towards the Atlantic ocean, as of Ireland, France, Spain, and all Africa, to the Cape of Good Hope, except in some shallow places, where it is impeded, and falls out later; and in the straits of Gibraltar, where, by reason of a motion propagated from the Mediterranean sea, it flows sooner. But, passing from those coasts over the breadth of the ocean to the coasts of America, the flood arrives first at the most eastern shores of Brazil, about the fourth or fifth lunar hour; then at the mouth of the river of the Amazons at the sixth hour, but at the neighbouring islands at the fourth hour: afterwards at the islands of Bermudas at the seventh hour, and at port St. Augustin in Florida at seven and a half. And therefore the tide is propagated through the ocean with a slower motion than it should be according to the course of the moon; and this retardation is very necessary, that the sea at the same time may fall between Brazil and New France, and rise at the Canary islands, and on the coasts of Europe and Africa, and vice versa: for the sea cannot rise in one place but by falling in another. And it is probable that the Pacific sea is agitated by the same laws: for in the coasts of Chili and Peru the highest flood is said to happen at the third lunar hour. But with what velocity it is thence propagated to the eastern coasts of Japan, the Philippine and other islands adjacent to China, I have not yet learned.

Farther; it may happen (p. 418) that the tide may be propagated from the ocean through different channels towards the same port, and may pass quicker through some channels than through others, in which case the same tide, divided into two or more succeeding one another, may compound new motions of different kinds. Let us suppose one tide to be divided into two equal tides, the former whereof precedes the other by the space of six hours, and happens at the third or twenty-seventh hour from the appulse of the moon to the meridian of the port. If the moon at the time of this appulse to the meridian was in the equator, every six hours alternately there would arise equal floods, which, meeting with as many equal ebbs, would so balance one the other, that, for that day, the water would stagnate, and remain quiet. If the moon then declined from the equator, the tides in the ocean would be alternately greater and less, as was said; and from hence two greater and two lesser tides would be alternately propagated towards that port. But the two greater floods would make the greatest height of the waters to fall out in the middle time betwixt both, and the greater and lesser floods would make the waters to rise to a mean height in the middle time between them; and in the middle time between