Page:Newton's Principia (1846).djvu/570

From Wikisource
Jump to navigation Jump to search
This page has been validated.
564
the system of the world.

The ingress of a comet into the sphere of the orbis magnus, or its egress from the same, happens at the time of its elongation from the sun, expressed in col. 1, against its diurnal motion. So in the comet of 1681. Jan. 4, O.S. the apparent diurnal motion in its orbit was about 3° 5′, and the corresponding elongation 71⅔°; and the comet had acquired this elongation from the sun Jan. 4, about six in the evening. Again, in the year 1680, Nov. 11, the diurnal motion of the comet that then appeared was about 4⅔°; and the corresponding elongation 79⅔ happened Nov. 10, a little before midnight. Now at the times named these comets had arrived at an equal distance from the sun with the earth, and the earth was then almost in its perihelion. But the first table is fitted to the earth's mean distance from the sun assumed of 1000 parts; and this distance is greater by such an excess of space as the earth might describe by its annual motion in one day's time, or the comet by its motion in 16 hours. To reduce the comet to this mean distance of 1000 parts, we add those 16 hours to the former time, and subduct them from the latter; and thus the former becomes Jan. 4d. 10h. afternoon; the latter Nov. 10, about six in the morning. But from the tenor and progress of the diurnal motions it appears that both comets were in conjunction with the sun between Dec. 7 and Dec. 8; and from thence to Jan. 4d.10h. afternoon on one side, and to Nov. 10d.6h. of the morning on the other, there are about 28 days. And so many days (by Table 1) the motions in parabolic trajectories do require.

But though we have hitherto considered those comets as two, yet, from the coincidence of their perihelions and agreement of their velocities, it is probable that in effect they were but one and the same; and if so, the orbit of this comet must have either been a parabola, or at least a conic section very little differing from a parabola, and at its vertex almost in contact with the surface of the sun. For (by Tab. 2) the distance of the comet from the earth, Nov. 10, was about 360 parts, and Jan. 4, about 630. From which distances, together with its longitudes and latitudes, we infer the distance of the places in which the comet was at those times to have been about 280: the half of which, viz., 140, is an ordinate to the comet's orbit, cutting off a portion of its axis nearly equal to the radius of the orbis magnus, that is, to 1000 parts. And, therefore, dividing the square of the ordinate 140 by 1000, the segment of the axis, we find the latus rectum 19,16, or in a round number 20; the fourth part whereof, 5, is the distance of the vertex of the orbit from the sun's centre. But the time corresponding to the distance of 5 parts in Tab. 1 is 27d.16h.7′. In which time, if the comet moved in a parabolic orbit, it would have been carried from its perihelion to the surface of the sphere of the orbis magnus described with the radius 1000, and would have spent the double of that time, viz., 55d.8¼h. in the whole course of its motion within that sphere: and so in fact it did; for from Nov. 10d. 6h. of the morning, the