Page:Our knowledge of the external world.djvu/195

From Wikisource
Jump to: navigation, search
This page has been proofread, but needs to be validated.

Between any two of them, there are others, for example, the arithmetical mean of the two. Thus no two fractions are consecutive, and the total number of them is infinite. It will be found that much of what Zeno says as regards the series of points on a line can be equally well applied to the series of fractions. And we cannot deny that there are fractions, so that two of the above ways of escape are closed to us. It follows that, if we are to solve the whole class of difficulties derivable from Zeno’s by analogy, we must discover some tenable theory of infinite numbers. What, then, are the difficulties which, until the last thirty years, led philosophers to the belief that infinite numbers are impossible?

The difficulties of infinity are of two kinds, of which the first may be called sham, while the others involve, for their solution, a certain amount of new and not altogether easy thinking. The sham difficulties are those suggested by the etymology, and those suggested by confusion of the mathematical infinite with what philosophers impertinently call the “true” infinite. Etymologically, “infinite” should mean “having no end.” But in fact some infinite series have ends, some have not; while some collections are infinite without being serial, and can therefore not properly be regarded as either endless or having ends. The series of instants from any earlier one to any later one (both included) is infinite, but has two ends; the series of instants from the beginning of time to the present moment has one end, but is infinite. Kant, in his first antinomy, seems to hold that it is harder for the past to be infinite than for the future to be so, on the ground that the past is now completed, and that nothing infinite can be completed. It is very difficult to see how he can have imagined that there was any sense in this remark; but it seems most probable that he was