Page:Popular Science Monthly Volume 1.djvu/494

From Wikisource
Jump to navigation Jump to search
This page has been validated.
480
THE POPULAR SCIENCE MONTHLY.

burners to the leaden chambers. In these deposits, the minute proportion of thallium contained originally in the pyrites becomes concentrated, so as to form in some instances as much as eight per cent, by weight of the dust. Independently, moreover, of its occurrence in iron pyrites, thallium, though never forming more than a minute constituent of the different minerals and mineral waters in which it occurs, is now known to be capable of extraction from a great number and variety of sources. But from no other source is it so advantageously procurable as from the above-mentioned flue-deposit; and so early as the autumn of 1863, at the meeting of the British Association in Newcastle, the then mayor, Mr. J. Lowthian Bell, exhibited several pounds, and Mr. Crookes no less than a quarter of a hundred-weight of thallium obtained from this comparatively prolific source. In one respect, the discovery of thallium presented even a greater degree of interest than attached to the discovery of cæsium and rubidium. For whereas these two elements were at once recognized as analogues of the well-known metal potassium, thallium can hardly be said, even at the present time, to be definitely and generally recognized by chemists as the analogue of any particular metal, or as a member of any particular family of elements. With each of such differently characterized elements as potassium, lead, aluminum, silver, and gold, it is associated by certain marked points of resemblance; while from each of them it is distinguished by equally well-marked points of difference. Hence the necessity for subjecting thallium and its salts to a thorough chemical examination, so as to accumulate a well-ascertained store of facts with regard to it. And, thanks to the careful labors of many chemists, more particularly of Mr. Crookes, in London, and of Messrs. Lamy and Willm, in Paris, our knowledge of the properties of thallium and of its salts may compare not unfavorably with our similar knowledge in relation to even the longest known of the metallic elements. Still, it was not until our knowledge of indium had culminated in the determination of its specific heat, only last year, that the position of thallium, as an analogue of indium and a member of the aluminum family of elements, became unmistakably evident.

Indium was first recognized in 1863, by Drs. Reich and Richter, in the zinc blende of Freiberg, in Saxony, and by reason of the very characteristic spectrum afforded—consisting of two bright-blue or indigo bands; the brightest of them somewhat more refrangible than the blue line of strontium, and the other of them somewhat less refrangible than the indigo line of potassium. Since its first discovery, indium has been recognized in one or two varieties of wolfram, and as a not unfrequent constituent of zinc-ores, and of the metal obtained therefrom, but always in a very minute proportion. Indeed, indium would appear to be an exceedingly rare element, far more rare than its immediate predecessors in period of discovery. Its chief source is metallic zinc—that of