Page:Popular Science Monthly Volume 15.djvu/759

From Wikisource
Jump to navigation Jump to search
This page has been validated.
PROTOPLASM AND LIFE.
739

acquainted with the further history of the embryo, I would refer to the excellent address delivered two years ago at the Plymouth meeting of the Association by one of my predecessors in this chair—Professor Allen Thompson.

That protoplasm, however, may present a phenomenon the reverse of that in which a simple cell becomes multiplied into many, is shown by a phenomenon already referred to—the production of plasmodia in the Myxomycetæ by the fusion into one another of cells originally distinct.

The genus Myriothela will afford another example in which the formation of plasmodia becomes introduced into the cycle of development. The primitive eggs are here, as elsewhere, true cells with nucleolated nuclei, but without any boundary membrane. They are formed in considerable numbers, but remain only for a short time separate and distinct. After this they begin to exhibit amœboid changes of shape, project pseudopodial prolongations which coalesce with those of others in their vicinity, and, finally, a multitude of these primitive ova become fused together into a common plasmodium, in which, as in the simple egg-cell of other animals, the phenomena of development take place.

In many of the lower plants a very similar coalescence is known to take place between the protoplasmic bodies of separate cells, and constitutes the phenomenon of conjugation. Spirogyra is a genus of algæ, consisting of long, green threads common in ponds. Every thread is composed of a series of cylindrical chambers of transparent cellulose placed end to end, each containing a sac of protoplasm with a large quantity of cell-sap, and with a green band of chlorophyl wound spirally on its walls. When the threads have attained their full growth they approach one another in pairs, and lie in close proximity, parallel one to the other. A communication is then established by means of short connecting-tubes between the chambers of adjacent filaments, and across the channel thus formed the whole of the protoplasm of one of the conjugating chambers passes into the cavity of the other, and then immediately fuses with the protoplasm it finds there. The single mass thus formed shapes itself into a solid oval body, known as a "zygospore." This now frees itself from the filament, secretes over its naked surface a new wall of cellulose, and, when placed in the conditions necessary for its development, attaches itself by one end, and then, by repeated acts of cell-division, grows into a many-celled filament like those in which it originated.

The formation of plasmodia, regarded as a coalescence and absolute fusion into one another of separate, naked masses of protoplasm, is a phenomenon of great significance. It is highly probable that, notwithstanding the complete loss of individuality in the combining elements, such differences as may have been present in these will always find themselves expressed in the properties of the resulting plas-