Page:Popular Science Monthly Volume 22.djvu/232

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
220
THE POPULAR SCIENCE MONTHLY.

differences are observed in the tension developed by small charges and by very much larger charges of gunpowder having the same density (i. e., occupying the same volume relatively to the entire space in which they are exploded), the reverse is the case with respect to gun-cotton. Under similar conditions in regard to density of charge, 100 grammes of gun-cotton gave a measured tension of about 20 tons on the square inch, 1,500 grammes gave a tension of about 29 tons (in several very concordant observations), while a charge of 2·5 kilos gave a pressure of about 45 tons, this being the maximum measured tension obtained with a charge of gunpowder of five times the density of the above.

The extreme violence of the explosion of gun-cotton as compared with gunpowder when fired in a closed space was a feature attended with formidable difficulties. In whatever way the charge was arranged in the firing-cylinder, if it had free access to the inclosed crusher gauge, the pressures recorded by the latter were always much greater than when means were taken to prevent the wave of matter suddenly set in motion from acting directly upon the gauge. The abnormal or wave-pressures recorded at the same time that the general tension in the cylinder was measured amounted in the experiment to 42·3 tons, when the general tension was recorded at 20 tons; and in another, when the pressure was measured at 29 tons, the wave-pressure recorded was 44 tons. Measurements of the temperature of explosion of guncotton showed it to be about double that of the explosion of gunpowder. One of the effects observed to be produced by this sudden enormous development of heat was the covering of the inner surfaces of the steel explosion-vessel with a net-work of cracks, small portions of the surface being sometimes actually fractured. The explosion of charges of gun-cotton up to 2·5 kilos in perfectly closed chambers, with development of pressures approaching to 50 tons on the square inch, constitutes alone a perfectly novel feat in investigations of this class.

Messrs. Noble and Abel are also continuing their researches upon fired gunpowder, being at present occupied with an inquiry into the influence exerted upon the chemical metamorphosis and ballistic effects of fired gunpowder by variation in its composition, their attention being directed especially to the discovery of the cause of the more or less considerable erosion of the interior surface of guns produced by the exploding charge—an effect which, notwithstanding the application of devices in the building up of the charge specially directed to the preservation of the gun's bore, has become so serious that, with the enormous charges now used in our heavy guns, the erosive action on the surface of the bore produced by a single round is distinctly perceptible. As there appeared to be prima facie reasons why the erosive action of powder upon the surface of the bore at the high temperatures developed should be at any rate in part due to its one component sulphur, Noble and Abel have made comparative experiments