Page:Popular Science Monthly Volume 22.djvu/234

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
222
THE POPULAR SCIENCE MONTHLY.

The radiometer of Crookes imported a new feature into these inquiries, which at the present time occupy the attention of leading physicists in all countries.

The means usually employed to produce electrical discharge in vacuum-tubes was Ruhmkorff's coil; but Mr. Gassiot first succeeded in obtaining the phenomena by means of a galvanic battery of 3,000 Leclanché cells. Dr. De La Rue, in conjunction with his friend Dr. Hugo Müller, has gone far beyond his predecessors in the production of batteries of high potential. At his lecture "On the Phenomena of Electric Discharge," delivered at the Royal Institution, in January, 1881, he employed a battery of his invention consisting of 14,400 cells (14,832 Volts), which gave a current of 0·054 Ampere, and produced a discharge at a distance of 0·71 inch between the terminals. During last year, he increased the number of cells to 15,000 (15,450 Volts), and increased the current to 0·4 Ampere, or eight times that of the battery he used at the Royal Institution.

With the enormous potential and perfectly steady current at his disposal, Mr. De La Rue has been able to contribute many interesting facts to the science of electricity. He has shown, for example, that the beautiful phenomena of the stratified discharge in exhausted tubes are but a modification and a magnification of those of the electric arc at ordinary atmospheric pressure. Photography was used in his experiments to record the appearance of the discharge, so as to give a degree of precision otherwise unattainable in the comparison of the phenomena. He has shown that between two points the length of the spark, provided the insulation of the battery is efficacious, is as the square of the number of cells employed. Mr. De La Rue's experiments have proved that at all pressures the discharge in gases is not a current in the ordinary acceptation of the term, but is of the nature of a disruptive discharge. Even in an apparently perfectly steady discharge in a vacuum-tube, when the strata as seen in a rapidly revolving mirror are immovable, he has shown that the discharge is a pulsating one; but, of course, the period must be of a very high order.

At the Royal Institution, on the occasion of his lecture, Mr. De La Rue produced, in a very large vacuum-tube, an imitation of the aurora borealis; and he has deduced from his experiments that the greatest brilliancy of aurora displays must be at an altitude of from thirty-seven to thirty-eight miles—a conclusion of the highest interest, and in opposition to the extravagant estimate of 281 miles at which it had been previously put.

The President of the Royal Society has made the phenomena of electrical discharge his study for several years, and resorted in his important experiments to a special source of electric power. In a note addressed to me, Dr. Spottiswoode describes the nature of his investigations much more clearly than I could venture to give them. He says: "It had long been my opinion that the dissymmetry shown in