Page:Popular Science Monthly Volume 23.djvu/231

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE CHEMISTRY OF COOKERY.
219

stant proportions in different samples of water. I need not here go into the quantitative details of these proportions, nor the reasons of their variation, though they are very interesting subjects.

Proceeding with our investigation, we shall find that the bubbles continue to form and rise until the water becomes too hot for the finger to bear immersion. At about this stage something else begins to occur. Much larger bubbles, or rather blisters, are now formed on the bottom of the vessel, immediately over the flame, and they continually collapse into apparent nothingness. Even at this stage a thermometer immersed in the water will show that the boiling-point is not reached. As the temperature rises, these blisters rise higher and higher, become more and more nearly spherical, finally quite so, then detach themselves and rise toward the surface; but the first that make this venture perish in the attempt—they gradually collapse as they rise,-and vanish before reaching the surface. The thermometer now shows that the boiling-point is nearly reached, but not quite. Presently the bubbles rise completely to the surface and break there. Now the water is boiling, and the thermometer stands at 212° Fahr. or 100 Cent.

With the aid of suitable apparatus it can be shown that the atmospheric gases above named continue to be given off along with the steam for a considerable time after the boiling has commenced; the complete removal of their last traces being a very difficult, if not an impossible, physical problem.

After a moderate period of boiling, however, we may practically regard the water as free from these gases. In this condition I venture to call it cooked water. Our experiment so far indicates one of the differences between cooked and raw water. The cooked water has been deprived of the atmospheric gases that the raw water contained. By cooling some of the cooked water and tasting it the difference of flavor is very perceptible; by no means improved, though it is quite possible to acquire a preference for this flat, tasteless liquid.

If a fish be placed in such cooked water it swims for a while with its mouth at the surface of the water, for just there is a film that is reacquiring its charge of oxygen, etc., by absorbing it from the air; but this film is so thin and so poorly charged, that after a short struggle the fish dies for lack of oxygen in its blood, drowned as truly and completely as a living, breathing animal when immersed in any kind of water.

Spring and river water that have passed through or over considerable distances in calcareous districts suffer another change in boiling. The origin and nature of this change may be shown by another experiment as follows: Buy a pennyworth of lime-water from a druggist, and procure a small glass tube of about quill-size, or the stem of a fresh tobacco-pipe may be used. Half fill a small wine-glass with the lime-water, and blow through it by means of the tube of the to-