Page:Popular Science Monthly Volume 27.djvu/671

From Wikisource
Jump to navigation Jump to search
This page has been validated.
SUNLIGHT AND THE EARTH'S ATMOSPHERE.
651

as well as the visible, and both with an instrument that would discriminate the energy in these very narrow spaces, like an eye to see in the dark; and if science possesses no such instrument, then it may be necessary to invent one.

The linear thermopile is nearest to it of any, and we all here know what good work it has done, but even that is not sensitive enough to measure in the grating spectrum, in some parts of which the heat is four hundred times weaker than in that of a prism, and we want to observe this invisible heat in very narrow spaces. Something like this has been provided since by Captain Abney's most valuable researches, but these did not at the time go low enough for my purpose, and I spent nearly a year before ascending the mountain in inventing and perfecting the new instrument for measuring these, which I have called the "bolometer" or "ray-measurer." The principle on which it is founded is the same as that employed by my late friend, Sir William Siemens, for measuring temperatures at the bottom of the sea, which is that a smaller electric current flows through a warm wire than through a cold one.

One great difficulty was to make the conducting wire very thin, and yet continuous, and for this purpose almost endless experiments, were made, among other substances pure gold having been obtained by chemical means in a plate so thin that it transmitted a sea-green light through the solid substance of the metal. This proving unsuitable, I learned that iron had been rolled of extraordinary thinness in a contest of skill between some English and American iron-masters, and, procuring some, I found that fifteen thousand of the iron plates they had rolled, laid one on the other, would make but one English inch. Here is some of it, rolled between the same rolls which turn out plates for an ironclad, but so thin that, as I let it drop, the iron plate flutters down like a dead leaf. Out of this the first bolometers were made, and I may mention that the cost of these earlier experiments was met from a legacy by the founder of the Royal Institution, Count Rumford. The iron is now replaced by platinum, in wires or rather tapes from 1/2000 to 1/20000 of an inch thick, one of which is within this button, where it is all but invisible, being far finer than a human hair. I will project it on the screen, placing a common small pin beside it as a standard of comparison. This button is placed in this ebonite case, and the thread is moved by this micrometer-screw, by which it can be set like the spider line of a reticule; but by means of this cable, connecting it to the galvanometer, this thread acts as though sensitive, like a nerve laid bare to every indication of heat and cold. It is then a sort of sentient thing: what the eye sees as light it feels as heat, and what the eye sees as a narrow band of darkness (the Fraunhofer line) this feels as a narrow belt of cold, so that when moved parallel to itself and the Fraunhofer lines down the spectrum it registers their presence.