Page:Popular Science Monthly Volume 29.djvu/207

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
THE FACTORS OF ORGANIC EVOLUTION.
195

tinuous cuticle, and by Laving the outer walls of its cells unlike the inner walls.[1] Especially instructive is the structure of such intermediate types as the Liverworts. Beyond the differentiation of the raring cells from the contained cells, and the contrast between upper surface and under surface, the frond of Marchantia polymorpha clearly shows us the direct effect of incident forces: and shows us, too, how it is involved with the effect of inherited proclivities. The frond grows from a flat disc-shaped gemma, the two sides of which are alike. Either side may fall uppermost; and then of the developing shoot, the side exposed to the light "is under all circumstances the upper side which forms stomata, the dark side becomes the under side which produces root-hairs and leafy processes."[2] So that while we have undeniable proof that the contrasted influences of the medium on the two sides, initiate the differentiation, we have also proof that the completion of it is determined by the transmitted structure of the type; since it is impossible to ascribe the development of stomata to the direct action of air and light. On turning from foliar expansion to stems and roots, facts of like meaning meet us. Speaking generally of epidermal tissue and inner tissue, Sachs remarks that "the contrast of the two is the plainer the more the part of the plant concerned is exposed to air and light."[3] Elsewhere, in correspondence with this, it is said that in roots the cells of the epidermis, though distinguished by bearing hairs, "are otherwise similar to those of the fundamental tissue"[4] which they clothe, while the cuticular covering is relatively thin; whereas in stems the epidermis (often further differentiated) is composed of layers of cells which are smaller and thicker-walled: a stronger contrast of structure corresponding to a stronger contrast of conditions. By way of meeting the suggestion that these respective differences are wholly due to the natural selection of favourable variations, it will suffice if I draw attention to the unlikeness between imbedded roots and exposed roots. While in darkness, and surrounded by moist earth, the outermost protective coats, even of large roots, are comparatively thin; but when the accidents of growth entail permanent exposure to light and air, roots acquire coverings allied in character to the coverings of branches. That the action of the medium causes these and converse changes, cannot be doubted when we find, on the one hand, that "roots can become directly transformed into leaf-bearing shoots," and, on the other hand, that in some plants certain "apparent roots are only underground shoots," and that nevertheless "they are similar to true roots in function and in the formation of tissue, but have no root-cap, and, when they come to the light above ground, continue to grow in the manner of ordinary leaf-shoots."[5] If, then, in highly developed plants inheriting pronounced structures, this differentiating

  1. Sachs, pp. 83-4.
  2. Ibid., p. 135.
  3. Ibid., p. 8.
  4. Ibid., p. 83.
  5. Ibid., p. 147.