Page:Popular Science Monthly Volume 29.djvu/541

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
RECENT PROGRESS IN CHEMISTRY.
525

of physics and pharmacy, these chemical periodicals issue annually about twenty thousand pages. Bearing these statistics in mind, are we not justified in feeling appalled at the idea of presenting within the compass of an evening's address a review of recent progress in chemistry? Any attempt to do more than glance at a few salient points is obviously out of the question. "Recent" time will of necessity be a somewhat variable quantity, its limits being determined by expediency. We shall also endeavor to bear in mind the fact that we address an audience not exclusively composed of professional chemists.

Much interest is commonly attached to announcements of new forms of matter—an interest out of proportion, perhaps, to the real value of the discoveries. During the last nine years chemists have not failed to sustain this interest, for they have proclaimed no less than thirty-four new elementary bodies. The ambition of these chemists, however, has been greater than their accuracy, for of these thirty-four bantlings but five or six have survived the scrutiny of the doctors, two or three are now in precarious health, and the remainder have been cremated without ceremonies. Of the youthful survivors comparatively little is known; their character is being severely tested, and their future destiny and utility are yet uncertain. The extreme rarity of the minerals in which the new elements have been detected, the excessively small percentages of the new ingredients, the extraordinary difficulties attending their separation from known substances combine to render the investigations laborious, protracted, and costly. From twenty-four hundred kilogrammes of zinc-blende, Lecoq de Boisbaudran, the discoverer of gallium, extracted sixty-two grammes of the precious metal; compared with this element, therefore, gold is both abundant and cheap. Ytterbium, scandium, samarium, thulium, and the rest, will long remain mere chemical curiosities known to but few; probably the most sanguine will not claim for them a future place among substances of economic value.

But of far greater importance than the elements themselves is the marvelous delicacy of the means used in detecting and isolating them. When Bunsen and Kirchhoff presented to scientists the instrument which combines the penetration of a telescope with the power of a microscope magnified a hundred-fold, they were enabled to disclose Nature's most hidden secrets. The new elements have been traced to their hiding-places, their differences established, and their subsequent purity demonstrated, chiefly by their emission and absorption spectra. Three years ago, William Crookes, who had already discovered thallium by the aid of the spectroscope, announced a novel and remarkable extension of the power of this instrument. Crookes found that many substances, when struck by the molecular discharge from the negative pole in a highly rarefied atmosphere, emit phosphorescent light of varied intensity. Having observed under these conditions a bright citron-colored band or line, he pursued the substance producing it, and,