Page:Popular Science Monthly Volume 29.djvu/543

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
RECENT PROGRESS IN CHEMISTRY,
527

ing this subject, at the Aberdeen meeting of the British Association, proposed a "reasonable explanation" of the periodic law; he regards the elements as compounds of carbon and æther, analogous to the hydrocarbon radicals, and suggests that all known bodies are made up of three primary elements—carbon, hydrogen, and æther—an assumption which can not be disproved. In recent years the periodic system has exerted noteworthy influence on the classification of the elements and their compounds. It is of positive utility in determining unsettled questions concerning new and rare elements, and is destined to maintain a lasting hold on chemical philosophy.

The question whether the known elements are truly primary forms of matter has long occupied the thoughts of chemists, and the problem constantly acquires new features. The influence of high temperatures on the spectra of the metals has been a fruitful source of speculations. In 1878 the English astronomer and physicist Lockyer announced the discovery of the resolution of the elements into one primary matter; but when Lockyer's paper was read before the Royal Society his discovery proved to be little more than a hypothesis, and that not a new one, he having been virtually anticipated by Professor F. W. Clarke, of Washington. However, Lockyer's hypothesis was based in part upon experimental evidence. After eliminating coincidences in the lines of the spectra of various metals, due to impurities, so large a number of identical lines remained that he advocated the assumption that these are produced by a primary matter common to the so-called elements. He pointed out that in the hottest stars, Sirius for example, hydrogen only is present, and argued that at extremely high temperatures the so-called elements are broken up into hydrogen, the ultimate matter of the universe. Lockyer's announcement excited, temporarily, a lively interest, but his views are not regarded as supported by sufficient evidence.

More recently, the doctrine of "structure" has been borrowed from organic chemistry, and applied to the elementary bodies; the relations existing between the elements is so similar in many respects to the relations between the hydrocarbons in a homologous series that the elements have been regarded as compounds of carbon with an unknown primary form of matter. Experimental evidence is lacking, but the hypothesis takes a plausible form.

During the past year an Austrian chemist has announced the decomposition of didymium by purely chemical means, and the discovery of praseodymium and neodymium as its constituent elements. An English chemist claims to have evidence of the existence of an allotropic form of nitrogen. Both these statements await confirmation.

The views of chemists concerning the nature of affinity and chemical action are undergoing modifications destined to wield an important influence on the science in the near future. The notion has prevailed, though not distinctly formulated, that the chemical attraction exerted