Page:Popular Science Monthly Volume 30.djvu/243

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PHYSIOLOGY OF ATTENTION AND VOLITION.
229

arteries that they turn on or shut off the blood-current as may seem to be necessary. While not disposed to question their great importance, a good deal might be said in favor of the notion that the molecular agitation in the tissue itself has a direct influence not only in assisting movement by lessening friction, but by exerting positive energy in urging the current onward.[1]

Into the controversy on these points, however, I can not enter here. For our present purpose it will be sufficient if the intimate relations between demand and supply be admitted as a matter of fact; if we can assume that functional activity involves a fuller volume and more rapid movement of blood in the capillaries of a part than does functional rest.

The last postulate I have to submit is the one on which my subsequent argument must mainly rest; but, unfortunately, it is the one whose soundness is most likely to be questioned. It is, that the mass of blood within the cranial cavity can be neither increased nor diminished directly, nor, indeed, to an appreciable extent within short periods of time.

A general statement of the argument in its support may lie in a nutshell. The available cubic space within the skull being a fixed quantity, the bulk of its contents must also continue uniform. These contents being the brain-tissue, the blood and the cerebro-spinal fluid, no one of these can be altered without an inverse change in one or both of the other contents. Thus, if a degenerative nutrition cause wasting of the brain-tissue, we must have an increase in one or both of the fluid contents, and thus evidence will be got of extreme congestion, or of serous effusion, or both. For any such change, however, time is required. Again, no amount of general depletion can reduce the intra-cranial circulation until time is afforded to allow effusion of serum to occur, because no mechanism exists for immediately raising any fluid from the spinal canal. Neither, on the other hand, can any increased force of the heart's action make the intra-cranial vessels fuller, for the cerebro-spinal fluid can not be immediately dis-

  1. In recent works on physiology it has been the tendency to ignore, if not altogether to deny, the active influence of local molecular change on the capillary circulation. In the higher animals, however, we have what I would consider crucial evidence in favor of its existence. I allude to the portal circulation. Here we have a large mass of blood returned from the chylopoietic viscera, which, before it can reach the heart, has to traverse the ramifications of the portal system of vessels. It will be at once admitted that considerable force must be required for the purpose. Now, if a vis a tergo alone be employed in moving the blood onward, the whole stress so occasioned must in this instance be borne by the mesenteric veins. The backward pressure within these vessels will bo as great as what is required to transmit the blood onward to the vena cava. Is it in the least probable that the thin walls of these veins could bear such a strain? I rather think that we have here evidence that, while the general circulation may be sustained by the action of the heart, certain forces acting at the capillaries give indispensable aid in transmitting the blood through the latter.