Page:Popular Science Monthly Volume 58.djvu/253

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
PHYSICAL AGENTS AND BACTERIAL LIFE.
245

Organisms may be gradually acclimatized to temperatures that prove unsuited to them under ordinary conditions. Thus the anthrax bacillus, with an optimum temperature for its development of 37° C, may be made to grow at 12° C, and at 42° C. Such anthrax bacilli proved pathogenic for the frog with a temperature of 12° C, and for the pigeon with a temperature of 42° C.

Let us, in a very few words, consider the inimical action of temperature on bacterial life. An organism placed below its minimum temperature ceases to develop, and if grown above its optimum temperature becomes attenuated as regards its virulence, etc., and may eventually die. The boiling point is fatal for non-sporing organisms in a few minutes. The exact thermal death-point varies according to the optimum and maximum temperature for the growth of the organism in question. Thus, for water bacteria with a low optimum temperature, blood heat may be fatal; for pathogenic bacteria developing best at blood heat, a thermophilic temperature may be fatal (60° C); and for thermophilic bacilli any temperature above 75° C. These remarks apply to the bacteria during their multiplying and vegetating phase of life. In their resting or spore stage the organisms are much more resistant to heat. Thus the anthrax organism in its bacillary phase is killed in one minute at 70° C; in its spore stage it resists this temperature for hours, and is only killed after some minutes by boiling. In the soil there are spores of bacteria which require boiling for sixteen hours to ensure their death. These are important points to be remembered in sterilization or disinfection experiments, viz., whether an organism does or does not produce these resistant spores. Most non-sporing forms are killed at 60° C. in a few minutes, but in an air-dry condition a longer time is necessary. Dry heat requires a longer time to act than moist heat: it requires 140° C. for three hours to kill anthrax spores. Dry heat cannot, therefore, be used for ordinary disinfection on account of its destructive action. Moist heat in the form of steam is the most effectual disinfectant, killing anthrax spores at boiling point in a few minutes, whilst a still quicker action is obtained if saturated steam under pressure be used. No spore, however resistant, remains alive after one minute's exposure to steam at 140° C. The varying thermal death-point of organisms and the problems of sterilization cannot be better illustrated than in the case of milk, which is an admirable soil for the growth of a large number of bacteria. The most obvious example of this is the souring and curdling of milk that occurs after it has been standing for some time. This change is mainly due to the lactic acid bacteria, which ferment the milk sugar with the production of acidity.

Another class of bacteria may curdle the milk without souring