Page:Popular Science Monthly Volume 64.djvu/299

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
SCIENTIFIC INVESTIGATION AND PROGRESS.
295

application in agriculture. The use of these substances, especially of saltpeter, is increasing rapidly. At present it seems that the successful cultivation of the soil is dependent upon the use of nitrates, and the supply of nitrates is limited. Unless something is done we may look forward to the time when the earth, for lack of proper fertilizers, will not be able to produce as much as it now does, and meanwhile the demand for food is increasing. According to the most reliable estimations indeed the saltpeter beds will be exhausted in thirty or forty years. Is there a way out? Dr. Frank shows that there is. In the air there is nitrogen enough for all. The plants can make only a limited use of this directly. For the most part it must be in some form of chemical combination as, for example, a nitrate or ammonia. The conversion of atmospheric nitrogen into nitric acid would solve the problem, and this is now carried out. But Dr. Frank shows that there is another, perhaps more economical, way of getting the nitrogen into a form suitable for plant food. Calcium carbide can now be made without difficulty and is made in enormous quantities by the action of a powerful electric current upon a mixture of coal and lime. This substance has the power of absorbing nitrogen from the air, and the product thus formed appears to be capable of giving up its nitrogen to plants, or, in other words, to be a good fertilizer. It is true that this subject requires further investigation, but the results thus far obtained are full of promise. If the outcome should be what we have reason to hope, we may regard the approaching exhaustion of the saltpeter beds with equanimity. But, even without this to pin our faith to, we have the preparation of nitric acid from the nitrogen and oxygen of the air to fall back upon.

While speaking of the food problem, a few words in regard to the artificial preparation of foodstuffs. I am sorry to say that there is not much of promise to report upon in this connection. In spite of the brilliant achievements of chemists in the field of synthesis it remains true that thus far they have not been able to make, except in very small quantities, substances that are useful as foods, and there is absolutely no prospect of this result being reached within a reasonable time. A few years ago Berthelot told us of a dream he had had. This has to do with the results that, according to Berthelot, are to be brought about by the advance of chemistry. The results of investigations already accomplished indicate that, in the future, methods will perhaps be devised for the artificial preparation of food from the water and carbonic acid so abundantly supplied by nature. Agriculture will then become unnecessary, and the landscape will not be disfigured by crops growing in geometrical figures. Water will be obtained from holes three or four miles deep in the earth, and this water will be above the boiling temperature, so that it can be used as a source of energy. It will