Page:Popular Science Monthly Volume 66.djvu/63

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
CONCEPTS OF PHYSICAL SCIENCE.
59

cation and the time during which it is applied. The Newtonian conception of force—the producer of motion—is adequate. All troublesome questions as to how force acts, of the mechanism by means of which its effects are produced are held in abeyance.

Speculative physics, to which the second set of concepts belong, deals with those portions of the science for which the mechanical basis has to be imagined. Heat, light, electricity and the science of the nature and ultimate properties of matter belong to this domain.

In the history of the theory of heat we find one of the earliest manifestations of a tendency so common in speculative physics that it may be considered characteristic; the assumption of a medium. The medium in this case was the so-called imponderable caloric; and it was one of a large class, of which the two electric fluids, the magnetic fluid, etc., were important members.

The theory of heat remained entirely speculative up to the time of the establishment of the mechanical equivalent of heat by Joule. The discovery that heat could be measured in terms of work, injected into thermal theory the conception of energy and led to the development of thermodynamics.

Generalizations of the sort expressed by Tyndall's phrase, heat a mode of motion, follow easily from the experimental evidence of the part which energy plays in thermal phenomena, but the specification of the precise mode of motion in question must always depend upon our views concerning the nature of matter, and can emerge from the speculative stage only, if ever, when our knowledge of the mechanics of the constitution of matter becomes fixed. The problem of the mechanism by which energy is stored or set free rests upon a similar speculative basis.

These are proper subjects for theoretical consideration, but the dictum of Rowland[1] that we get out of mathematical formulae only what we put into them should never be lost from sight. So long as we put in only assumptions we shall take out hypotheses, and useful as these may prove, they are to be regarded as belonging to the realm of scientific speculation. They must be recognized as subject to modification indefinitely as we, in consequence of increasing knowledge, are led to modify our assumptions.

The conditions with which the physicist has to deal in his study of optics are especially favorable to the development of the scientific imagination, and it is in this field that some of the most remarkable instances of successful speculative work are to be found. The emission theory died hard and the early advocates of the undulatory theory of light were forced to work up with a completeness, probably without parallel in the history of science, the evidence, necessarily indirect, that in optics we have to do with a wave-motion. The standpoint of


  1. Rowland, president's address to the American Physical Society, 1900.