Page:Popular Science Monthly Volume 69.djvu/274

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
270
THE POPULAR SCIENCE MONTHLY

mechanics verifies this statement, for since the time of d'Alembert no essentially new principle has been discovered, and Gauss may be quoted as authority for saying that none ever can be.

The second stage of development was characterized by the elaboration of the system of mechanics formulated by Archimedes, Galileo, Newton and d'Alembert. In the course of this process a new view of the fundamental ideas underlying the subject was attained, which resulted in establishing mechanics upon an entirely different basis. The first step in this direction was made by Euler, and consisted in replacing the geometrical methods of Newton and his predecessors by those of analysis. Euler thus laid the foundation for a system of analytical mechanics which was brought to its perfection by Lagrange in his generalized equations of motion.

This new representation of mechanics was followed by the establishment in the early part of the last century of two great principles; the principle of least action and the principle of the conservation of energy. It is important to note in this connection, however, that each of these principles is deducible from that of d'Alembert, and, consequently, that their establishment did not increase the number of independent fundamental postulates.

The first of these principles dates back to the attempt of Maupertuis to establish on theological grounds a principle of similar nature but of much more limited scope. This attempt, although fruitless in itself, served to direct thought in a new channel, and finally led Gauss to the statement of his 'Principle of Least Constraint.' This in turn led investigators to the idea that all natural phenomena present a maximum or a minimum, and induced Euler and Jacobi to seek expressions whose conditions for a minimum would give the equations of motion. From this it was but a step to the establishment of Hamilton's principle, which consists in the analytical statement that the variations of work and energy vanish for the initial and final configurations. As Hamilton's principle includes both conservative and non-conservative systems, it constitutes a generalization of the principle of least action.

This second principle, like the first, was the product of evolution, as the ideas underlying it had been the subject of investigation from the time of Leibnitz and Descartes. The principle did not assume definite form, however, until the middle of the nineteenth century, when it was stated by several investigators almost simultaneously as the law of the conservation of energy. The names most closely associated with this principle are those of Mayer, Joule and Helmholtz, and it is curious to note that each of these scientists arrived at his results by a different process; Mayer by philosophical reasoning, Joule by experimentation and Helmholtz by mathematical analysis.

The establishment of this law marked the close of the second stage