Page:Popular Science Monthly Volume 75.djvu/429

From Wikisource
Jump to navigation Jump to search
This page has been validated.
SHIFTING OF THE EARTH'S AXIS
425

The four stations first established, Mizusawa, Carloforte, Gaithersburg and Ukiah, are provided with zenith telescopes of exactly the same pattern, and constructed especially for this work of observing latitudes by the Talcott method.[1]

These instruments, illustrated in Fig. 4, were made by Wanschaff, of Berlin, and have objectives of 414 inches aperture and focal lengths of fifty-one inches. The instruments at Tschardjui and Cincinnati Fig. 4. are of similar design by the same maker, but smaller. From the figure it may be seen that the telescope is fixed perpendicular to the end of a horizontal axis. By placing this axis in an east and west direction the telescope will move only in the plane of the meridian as the horizontal axis is rotated in its supports. The whole instrument may be revolved about the vertical axis, m and by properly adjusted stops on the base-piece the amount of rotation may be limited to 180°, thus giving two east and west positions for the horizontal axis, one, telescope east, the other, telescope west. It is readily seen that if the telescope is set to point say 10° north of the zenith when east of the vertical axis, then, without disturbing the setting of the telescope, if the whole instrument be revolved about the vertical axis, the telescope will, when it comes into the position west of the axis, be pointed 10° south of the zenith. It is thus possible to measure the difference of zenith distance of two stars,

  1.  Descriptions of this method may be found in any work on practical astronomy. The following statements concerning the method may be of help to those who are not familiar with its details. In order to make a determination of the latitude by this method it is necessary to measure, by means of an eye-piece micrometer attached to the zenith-telescope, the difference of zenith distance of two stars of known declination which culminate at nearly equal zenith-distances, one north of and the other south of the zenith. The telescope is set at the mean of the zenith-distances of the two stars and the first to culminate will pass a little above or below the middle of the field of view. The distance from the