Page:Popular Science Monthly Volume 79.djvu/323

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
GENETICS
319

claimed that the genetic system of the sweet pea is, as things go, fairly well understood. To do any of these things would require a control of events so lawless and rare that for ages they must probably remain classed as accidents. On the other hand, the modes by which combinations can be made, and by which new forms can be fixed, are through Mendelian analysis and the recent developments of genetic science now reasonably clear, and with that knowledge much of the breeder's work is greatly simplified. This part of the subject is so well understood that I need scarcely do more than allude to it.

A simple and interesting example is furnished by the work which Mr. H. M. Leake is carrying out in the case of cotton in India. The cottons of fine quality grown in India are monopodial in habit, and are consequently late in flowering. In the United Provinces a comparatively early-flowering form is required, as otherwise there is not time for the fruits to ripen. The early varieties are sympodial in habit, and the primary apex does not become a flower. Hitherto no sympodial form with cotton of high quality has existed, but Mr. Leake has now made the combination needed, and has fixed a variety with high-class cotton and the sympodial habit, which is suitable for cultivation in the United Provinces. Until genetic physiology was developed by Mendelian analysis, it is safe to say that a practical achievement of this kind could not have been made with rapidity or certainty. The research was planned on broad lines. In the course of it much light was obtained on the genetics of cotton, and features of interest were discovered which considerably advance our knowledge of heredity in several important respects. This work forms an admirable illustration of that simultaneous progress both towards the solution of a complex physiological problem and also towards the successful attainment of an economic object which should be the constant aim of agricultural research.

Necessarily it follows that such assistance as genetics can at present give is applicable more to the case of plants and animals which can be treated as annuals than to creatures of slower generation. Yet this already is a large area of operations. One of the greatest advances to be claimed for the work is that it should induce raisers of seed crops especially to take more hopeful views of their absolute purification than have hitherto prevailed. It is at present accepted as part of the natural perversity of things that most high-class seed crops must throw "rogues," or that at the best the elimination of these waste plants can only be attained by great labor extended over a vast period of time. Conceivably that view is correct, but no one acquainted with modern genetic science can believe it without most cogent proof. Far more probably we should regard these rogues either as the product of a few definite individuals in the crop, or even as chance impurities brought