Page:Scientific Memoirs, Vol. 3 (1843).djvu/703

From Wikisource
Jump to: navigation, search
This page has been validated.
693
ON BABBAGE'S ANALYTICAL ENGINE.

ingredient in the science, which they must do in studying the engine. The confusion, the difficulties, the contradictions which, in consequence of a want of accurate distinctions in this particular, have up to even a recent period encumbered mathematics in all those branches involving the consideration of negative and impossible quantities, will at once occur to the reader who is at all versed in this science, and would alone suffice to justify dwelling somewhat on the point, in connexion with any subject so peculiarly fitted to give forcible illustration of it, as the Analytical Engine. It may be desirable to explain, that by the word operation, we mean any process which alters the mutual relation of two or more things, be this relation of what kind it may. This is the most general definition, and would include all subjects in the universe. In abstract mathematics, of course operations alter those particular relations which are involved in the considerations of number and space, and the results of operations are those peculiar results which correspond to the nature of the subjects of operation. But the science of operations, as derived from mathematics more especially, is a science of itself, and has its own abstract truth and value; just as logic has its own peculiar truth and value, independently of the subjects to which we may apply its reasonings and processes. Those who are accustomed to some of the more modern views of the above subject, will know that a few fundamental relations being true, certain other combinations of relations must of necessity follow; combinations unlimited in variety and extent if the deductions from the primary relations be carried on far enough. They will also be aware that one main reason why the separate nature of the science of operations has been little felt, and in general little dwelt on, is the shifting meaning of many of the symbols used in mathematical notation. First, the symbols of operation are frequently also the symbols of the results of operations. We may say that these symbols are apt to have both a retrospective and a prospective signification. They may signify either relations that are the consequence of a series of processes already performed, or relations that are yet to be effected through certain processes. Secondly, figures, the symbols of numerical magnitude, are frequently also the symbols of operations, as when they are the indices of powers. Wherever terms have a shifting meaning, independent sets of considerations are liable to become complicated together, and reasonings and results are frequently falsified. Now in the Analytical Engine the operations which come under the first of the above heads, are ordered and combined by means of a notation and of a train of mechanism which belong exclusively to themselves; and with respect to the second head, whenever numbers meaning operations and not quantities (such as the indices of powers), are inscribed on any column or set of columns, those columns immediately act in a wholly separate and independent manner, becoming connected with the operating mechanism exclusively, and re-acting upon this. They never come into combination with numbers upon any other columns meaning quantities; though, of course, if there are numbers meaning operations upon \scriptstyle{n} columns, these may combine amongst each other, and will often be required to do so, just as numbers meaning quantities combine with each other in any variety. It might have been arranged that all numbers meaning operations should have appeared on some separate portion of the engine from that which presents