The Variation of Animals and Plants under Domestication/VIII

From Wikisource
Jump to: navigation, search

[ 276 ]

CHAPTER VIII.
DUCKS—GOOSE—PEACOCK—TURKEY—GUINEA-FOWL—CANARY-BIRD—GOLD-FISH—HIVE-BEES—SILK-MOTHS.
DUCKS, several breeds ofprogress of domesticationorigin of, from the common wild-duckdifferences in the different breedsosteological differenceseffects of use and disuse on the limb-bones.
GOOSE, anciently domesticatedlittle variation ofsebastopol breed.
PEACOCK, origin of black-shouldered breed.
TURKEY, breeds ofcrossed with the united states specieseffects of climate on.
GUINEA-FOWL, CANARY-BIRD, GOLD-FISH, HIVE-BEES.
SILK-MOTHS, species and breeds ofanciently domesticatedcare in their selectiondifferences in the different racesin the egg, caterpillar, and cocoon statesinheritance of charactersimperfect wingslost instinctscorrelated characters.

I will, as in previous cases, first briefly describe the chief domestic breeds of the duck:—

Breed 1. Common Domestic Duck.—Varies much in colour and in proportions, and differs in instincts and disposition from the wild-duck. There are several sub-breeds:—(1) The Aylesbury, of great size, white, with pale-yellow beak and legs; abdominal sack largely developed. (2) The Rouen, of great size, coloured like the wild-duck, with green or mottled beak; abdominal sack largely developed. (3) Tufted Duck, with a large top-knot of fine downy feathers, supported on a fleshy mass, with the skull perforated beneath. The top-knot in a duck which I imported from Holland was two and a half inches in diameter. (4) Labrador (or Canadian, or Buenos Ayres, or East Indian); plumage entirely black; beak broader, relatively to its length, than in the wild-duck; eggs slightly tinted with black. This sub-breed perhaps ought to be ranked as a breed; it includes two sub-varieties, one as large as the common domestic duck, which I have kept alive, and the other smaller and often capable of flight.[436] I presume it is this latter sub-variety which has been described in France[437] as flying well, being rather wild, and when cooked having the flavour of the wild-duck; nevertheless this sub-variety is polygamous, like other domesticated ducks and unlike the wild duck. These black Labrador ducks breed true; [ 277 ] but a case is given by Dr. Turral of the French sub-variety producing young with some white feathers on the head and neck, and with an ochre-coloured patch on the breast.
Breed 2. Hook-billed Duck.—This bird presents an extraordinary appearance from the downward curvature of the beak. The head is often tufted. The common colour is white, but some are coloured like wild-ducks. It is an ancient breed, having been noticed in 1676.[438] It shows its prolonged domestication by almost incessantly laying eggs, like the fowls which are called everlasting layers.[439]
Breed 3. Call-Duck.—Remarkable from its small size, and from the extraordinary loquacity of the female. Beak short. These birds are either white, or coloured like the wild-duck.
Breed 4. Penguin Duck.—This is the most remarkable of all the breeds, and seems to have originated in the Malayan archipelago. It walks with its body extremely erect, and with its thin neck stretched straight upwards. Beak rather short. Tail upturned, including only 18 feathers. Femur and meta-tarsi elongated.

Almost all naturalists admit that the several breeds are descended from the common wild duck (Anas boschas); most fanciers, on the other hand, take as usual a very different view.[440] Unless we deny that domestication, prolonged during centuries, can affect even such unimportant characters as colour, size, and in a slight degree proportional dimensions and mental disposition, there is no reason whatever to doubt that the domestic duck is descended from the common wild species, for the one differs from the other in no important character. We have some historical evidence with respect to the period and progress of the domestication of the duck. It was unknown[441] to the ancient Egyptians, to the Jews of the Old Testament, and to the Greeks of the Homeric period. About eighteen centuries ago Columella[442] and Varro speak of the necessity of keeping ducks in netted enclosures like other wild fowl, so that at this period there was danger of their flying away. [ 278 ] Moreover, the plan recommended by Columella to those who might wish to increase their stock of ducks, namely, to collect the eggs of the wild bird and to place them under a hen, shows, as Mr. Dixon remarks, "that the duck had not at this time become a naturalised and prolific inmate of the Roman poultry-yard." The origin of the domestic duck from the wild species is recognised in nearly every language of Europe, as Aldrovandi long ago remarked, by the same name being applied to both. The wild duck has a wide range from the Himalayas to North America. It crosses readily with the domestic bird, and the crossed offspring are perfectly fertile.

Both in North America and Europe the wild duck has been found easy to tame and breed. In Sweden this experiment was carefully tried by Tiburtius; he succeeded in rearing wild ducks for three generations, but, though they were treated like common ducks, they did not vary even in a single feather. The young birds suffered from being allowed to swim about in cold water,[443] as is known to be the case, though the fact is a strange one, with the young of the common domestic duck. An accurate and well-known observer in England[444] has described in detail his often repeated and successful experiments in domesticating the wild duck. Young birds are easily reared from eggs hatched under a bantam; but to succeed it is indispensable not to place the eggs of both the wild and tame duck under the same hen, for in this case "the young wild ducks die off, leaving their more hardy brethren in undisturbed possession of their foster-mother's care. The difference of habit at the onset in the newly-hatched ducklings almost entails such a result to a certainty." The wild ducklings were from the first quite tame towards those who took care of them as long as they wore the same clothes, and likewise to the dogs and cats of the house. They would even snap with their beaks at the dogs, and drive them away from any spot which they coveted. But they were much alarmed at strange men and dogs. Differently from what [ 279 ] occurred in Sweden, Mr. Hewitt found that his young birds always changed and deteriorated in character in the course of two or three generations; notwithstanding that great care was taken to prevent any crossing with tame ducks. After the third generation his birds lost the elegant carriage of the wild species, and began to acquire the gait of the common duck. They increased in size in each generation, and their legs became less fine. The white collar round the neck of the mallard became broader and less regular, and some of the longer primary wing-feathers became more or less white. When this occurred, Mr. Hewitt always destroyed his old stock and procured fresh eggs from wild nests; so that he never bred the same family for more than five or six generations. His birds continued to pair together, and never became polygamous like the common domestic duck. I have given these details, because no other case, as far as I know, has been so carefully recorded by a competent observer of the progress of change in wild birds reared for several generations in a domestic condition.

From these considerations there can hardly be a doubt that the wild duck is the parent of the common domestic kind; nor need we look to distinct species for the parentage of the more distinct breeds, namely, Penguin, Call, Hook-billed, Tufted, and Labrador ducks. I will not repeat the arguments used in the previous chapters on the improbability of man having in ancient times domesticated several species since become unknown or extinct, though ducks are not readily exterminated in the wild state;—on some of the supposed parent-species having had abnormal characters in comparison with all the other species of the genus, as with hook-billed and penguin ducks;—on all the breeds, as far as is known, being fertile together;[445]—on all the breeds having the same general disposition, instinct, &c. But one fact bearing on this question may be noticed: in the great duck family, one species alone, namely, the male of [ 280 ] A. boschas, has its four middle tail-feathers curled upwardly; now in every one of the above-named domestic breeds these curled feathers exist, and on the supposition that they are descended from distinct species, we must assume that man formerly hit upon species all of which had this now unique character. Moreover, sub-varieties of each breed are coloured almost exactly like the wild duck, as I have seen with the largest and smallest breeds, namely Rouens and Call-ducks, and, as Mr. Brent states,[446] is the case with Hook-billed ducks. This gentleman, as he informs me, crossed a white Aylesbury drake and a black Labrador duck, and some of the ducklings as they grew up assumed the plumage of the wild duck.

With respect to Penguins, I have not seen many specimens, and none were coloured precisely like the wild duck; but Sir James Brooke sent me three skins from Lombok and Bali, in the Malayan archipelago; the two females were paler and more rufous than the wild duck, and the drake differed in having the whole under and upper surface (excepting the neck, tail-coverts, tail, and wings) silver-grey, finely pencilled with dark lines, closely like certain parts of the plumage of the wild mallard. But I found this drake to be identical in every feather with a variety of the common breed procured from a farm-yard in Kent, and I have occasionally elsewhere seen similar specimens. The occurrence of a duck bred under so peculiar a climate as that of the Malayan archipelago, where the wild species does not exist, with exactly the same plumage as may occasionally be seen in our farm-yards, is a fact worth notice. Nevertheless the climate of the Malayan archipelago apparently does tend to cause the duck to vary much, for Zollinger,[447] speaking of the Penguin breed, says that in Lombok "there is an unusual and very wonderful variety of ducks." One Penguin drake which I kept alive differed from those of which the skins were sent me from Lombok, in having its breast and back partially coloured with chestnut-brown, thus more closely resembling the Mallard.

From these several facts, more especially from the drakes of all the breeds having curled tail-feathers, and from certain sub-varieties in each breed occasionally resembling in general [ 281 ] plumage the wild duck, we may conclude with confidence that all the breeds are descended from A. boschas.

I will now notice some of the peculiarities characteristic of the several breeds. The eggs vary in colour; some common ducks laying pale-greenish and others quite white eggs. The eggs which are first laid during each season by the black Labrador duck, are tinted black, as if rubbed with ink. So that with ducks, as with poultry, some degree of correlation exists between the colour of the plumage and the egg-shell. A good observer assured me that one year his Labrador ducks laid almost perfectly white eggs, but that the yolks were this same season dirty olive-green, instead of as usual of a golden yellow, so that the black tint appeared to have passed inwards. Another curious case shows what singular variations sometimes occur and are inherited; Mr. Hansell[448] relates that he had a common duck which always laid eggs with the yolk of a dark-brown colour like melted glue; and the young ducks, hatched from these eggs, laid the same kind of eggs, so that the breed had to be destroyed.
The hook-billed duck has a most remarkable appearance (see fig. of skull, woodcut No. 39); and its peculiar beak has been inherited at least since the year 1676. This structure is evidently analogous with that described in the Bagadotten carrier pigeon. Mr. Brent[449] says that, when hook-billed ducks are crossed with common ducks, "many young ones are produced with the upper mandible shorter than the lower, which not unfrequently causes the death of the bird." A tuft of feathers on the head is by no means a rare occurrence; namely, in the true tufted breed, the hook-billed, the common farmyard duck, and in a duck having no other peculiarity which was sent to me from the Malayan archipelago. The tuft is only so far interesting as it affects the skull, which is thus rendered slightly more globular, and is perforated by numerous apertures. Call-ducks are remarkable from their extraordinary loquacity: the drake only hisses like common drakes; nevertheless, when paired with the common duck, he transmits to his female offspring a strong quacking tendency. This loquacity seems at first a surprising character to have been acquired under domestication. But the voice varies in the different breeds; Mr. Brent[450] says that hook-billed ducks are very loquacious, and that Rouens utter a "dull, loud, and monotonous cry, easily distinguishable by an experienced ear." As the loquacity of the Call-duck is highly serviceable, these birds being used in decoys, this quality may have been increased by selection. For instance, Colonel Hawker says, if young wild-ducks cannot be got for a decoy, "by way of make-shift, select tame birds which are the most clamorous, even if their colour should not be like that of wild ones."[451] It has been [ 282 ] falsely asserted that Call-ducks hatch their eggs in less time than common ducks.[452]
The Penguin duck is the most remarkable of all the breeds; the thin neck and body are carried erect; the wings are small; the tail is upturned; and the thigh-bones and metatarsi are considerably lengthened in proportion with the same bones in the wild duck. In five specimens examined by me there were only eighteen tail-feathers instead of twenty as in the wild duck; but I have also found only eighteen and nineteen tail-feathers in two Labrador ducks. On the middle toe, in three specimens, there were twenty-seven or twenty-eight scutellæ, whereas in two wild ducks there were thirty-one and thirty-two. The Penguin when crossed transmits with much power its peculiar form of body and gait to its offspring; this was manifest with some hybrids raised in the Zoological Gardens between one of these birds and the Egyptian goose[453] (Anser Ægyptiacus), and likewise with some mongrels which I raised between the Penguin and Labrador duck. I am not much surprised that some writers have maintained that this breed must be descended from an unknown and distinct species; but from the reasons already assigned, it seems to me far more probable that it is the descendant, much modified by domestication under an unnatural climate, of Anas boschas.
Fig. 39.—Skulls, viewed laterally, reduced to two-thirds of the natural size. A. Wild Duck. B. Hook-billed Duck.

Osteological Characters.—The skulls of the several breeds differ from each other and from the skull of the wild duck in very little except in the proportional length and curvature of the premaxillaries. These latter bones in the Call-duck are short, and a line drawn from their extremities to the summit of the skull is nearly straight, instead of being concave as in the [ 283 ] common duck; so that the skull resembles that of a small goose. In the hook-billed duck (fig. 39) these same bones as well as the lower jaw curve downwards in a most remarkable manner, as represented. In the Labrador duck the premaxillaries are rather broader than in the wild duck; and in two skulls of this breed the vertical ridges on each side of the supra-occipital bone are very prominent. In the Penguin the premaxillaries are relatively shorter than in the wild duck; and the inferior points of the paramastoids more prominent. In a Dutch tufted duck, the skull under the enormous tuft was slightly more globular and was perforated by two large apertures; in this skull the lachrymal bones were produced much further backwards, so as to have a different shape and to nearly touch the post. lat. processes of the frontal bones, thus almost completing the bony orbit of the eye. As the quadrate and pterygoid bones are of such complex shape and stand in relation with so many other bones, I carefully compared them in all the principal breeds; but excepting in size they presented no difference.

Fig. 40.—Cervical Vertebræ, of natural size. A. Eighth cervical vertebra of Wild Duck, viewed on hæmal surface. B. Eighth cervical vertebra of Call Duck, viewed as above. C. Twelfth cervical vertebra of Wild Duck, viewed laterally. D. Twelfth cervical vertebra of Aylesbury Duck, viewed laterally.

Vertebræ and Ribs.—In one skeleton of the Labrador duck there were the usual fifteen cervical vertebræ and the usual nine dorsal vertebræ bearing ribs; in the other skeleton there were fifteen cervical and ten dorsal vertebræ with ribs; nor, as far as could be judged, was this owing merely to a rib having been developed on the first lumbar vertebra; for in both skeletons the lumbar vertebræ agreed perfectly in number, shape, and size with those of the wild duck. In two skeletons of the Call-duck there were fifteen cervical and nine dorsal vertebræ; in a third skeleton small ribs were attached to the so-called fifteenth cervical vertebra, making ten pairs of ribs; but these ten ribs do not correspond, or arise from the same vertebræ, with the ten in the above-mentioned Labrador duck. In the Call-duck, which had small ribs attached to the fifteenth cervical vertebra, the hæmal spines of the thirteenth and fourteenth (cervical) and of the seventeenth (dorsal) vertebræ corresponded with the spines on the fourteenth, fifteenth, and eighteenth vertebræ of the wild duck: so that each of these vertebræ had acquired a structure proper to one posterior to it in position. In the twelfth cervical vertebra of this same Call-duck (fig. 40, B), the two branches of the hæmal spine stand much closer together than in the wild duck (A), and the descending hæmal processes are much shortened. In the Penguin duck the neck from its thinness and erectness falsely appears (as ascertained by measurement) to be much elongated, but the cervical and dorsal vertebræ present no difference; the posterior dorsal vertebræ, however, are more completely anchylosed to [ 284 ] the pelvis than in the wild duck. The Aylesbury duck has fifteen cervical and ten dorsal vertebræ furnished with ribs, but the same number of lumbar, sacral, and caudal vertebræ, as far as could be traced, as in the wild duck. The cervical vertebræ in this same duck (fig. 40, D) were much broader and thicker relatively to their length than in the wild (C); so much so, that I have thought it worth while to give a sketch of the eighth cervical vertebra in these two birds. From the foregoing statements we see that the fifteenth cervical vertebra occasionally becomes modified into a dorsal vertebra, and when this occurs all the adjoining vertebræ are modified. We also see that an additional dorsal vertebra bearing a rib is occasionally developed, the number of the cervical and lumbar vertebræ apparently remaining the same as usual.

I examined the bony enlargement of the trachea in the males of the Penguin, Call, Hook-billed, Labrador, and Aylesbury breeds; and in all it was identical in shape.

The Pelvis is remarkably uniform; but in the skeleton of the Hook-billed duck the anterior part is much bowed inwards; in the Aylesbury and some other breeds the ischiadic foramen is less elongated. In the sternum, furcula, coracoids, and scapula, the differences are so slight and so variable as not to be worth notice, except that in two skeletons of the Penguin duck the terminal portion of the scapula was much attenuated.

In the bones of the leg and wing no modification in shape could be observed. But in Penguin and Hook-billed ducks, the terminal phalanges of the wing are a little shortened. In the former, the femur and metatarsus (but not the tibia) are considerably lengthened, relatively to the same bones in the wild duck, and to the wing-bones in both birds. This elongation of the leg-bones could be seen whilst the bird was alive, and is no doubt connected with its peculiar upright manner of walking. In a large Aylesbury duck, on the other hand, the tibia was the only bone of the leg which relatively to the other bones was slightly lengthened.

On the effects of the increased and decreased Use of the Limbs.—In all the breeds the bones of the wing (measured separately after having been cleaned) relatively to those of the leg have become slightly shortened, in comparison with the same bones in the wild duck, as may be seen in the following table:—


Name of Breed.

Length of Femur, Tibia, and Metatarsus together.

Length of Humerus, Radius, and Metacarpus together.

Or as

Inches.

Inches.

Wild mallard

7.14

  9.28

100 : 129

Aylesbury

8.64

10.43

100 : 120

Tufted (Dutch)

8.25

  9.83

100 : 119

Penguin

7.12

  8.78

100 : 123

Call

6.20

  7.77

100 : 125

Length of same Bones.

Length of all the Bones of Wing.

Inches.

Inches.

Wild duck (another specimen)

6.85

10.07

100 : 147

Common domestic duck

8.15

11.26

100 : 138


[ 285 ]

In the foregoing table we see that, in comparison with the wild duck, the reduction in the length of the bones of the wing, relatively to those of the legs, though slight, is universal. The reduction is least in the Call-duck, which has the power and the habit of frequently flying.
In weight there is a greater relative difference between the bones of the leg and wing, as may be seen in the following table:—


Name of Breed.

Weight of Femur, Tibia, and Metatarsus

Weight of Humerus, Radius, and Metacarpus

Or as

Grains.

Grains.

Wild mallard

  54

  97

100 : 179

Aylesbury

164

204

100 : 124

Hooked-bill

107

160

100 : 149

Tufted (Dutch)

111

148

100 : 133

Penguin

  75

     90.5

100 : 120

Labrador

141

165

100 : 117

Call

  57

  93

100 : 163

Weight of all the Bones of the Leg and Foot.

Weight of all the Bones of the Wing.

Grains.

Grains.

Wild duck (another specimen)

  66

115

100 : 173

Common domestic duck

127

158

100 : 124


In these domesticated birds, the considerably lessened weight of the bones of the wing (i.e. on an average, twenty-five per cent. of their proper proportional weight), as well as their slightly lessened length, relatively to the leg-bones, might follow, not from any actual decrease in the wing-bones, but from the increased weight and length of the bones of the legs. The first of the two tables on the next page shows that the leg-bones relatively to the weight of the entire skeleton have really increased in weight; but the second table shows that according to the same standard the wing-bones have also really decreased in weight; so that the relative disproportion shown in the foregoing tables between the wing and leg bones, in comparison with those of the wild duck, is partly due to the increase in weight and length of the leg-bones, and partly to the decrease in weight and length of the wing-bones.
With respect to the two following tables, I may first state that I tested them by taking another skeleton of a wild duck and of a common domestic duck, and by comparing the weight of all the bones of the leg with all those of the wings, and the result was the same. In the first of these tables we see that the leg-bones in each case have increased in actual weight. It might have been expected that, with the increased or decreased weight of the entire skeleton, the leg-bones would have become proportionally heavier or lighter; but their greater weight in all the breeds relatively to the other bones can be accounted for only by these domestic birds having used their legs in walking and standing much more than the wild, for they never fly, and the more artificial breeds rarely swim. In the second [ 286 ] table we see, with the exception of one case, a plain reduction in the weight of the bones of the wing, and this no doubt has resulted from their lessened use. The one exceptional case, namely, in one of the Call-ducks, is in truth no exception, for this bird was constantly in the habit of flying about: and I have seen it day after day rise from my grounds, and fly for a long time in circles of more than a mile in diameter. In this Call-duck there is not only no decrease, but an actual increase in the weight of the wing-bones relatively to those of the wild duck; and this probably is consequent on the remarkable lightness and thinness of all the bones of the skeleton.


Name of Breed.

Weight of entire Skeleton. (N.B. One Metatarsus and Foot was removed from each skeleton, as it had been accidentally lost in two cases.)

Weight of Femur, Tibia, and Metatarsus.

Or as

Grains.

Grains.

Wild mallard

  839

  54

1000 : 64

Aylesbury

1925

164

1000 : 85

Tufted (Dutch)

1404

111

1000 : 79

Penguin

  871

  75

1000 : 86

Call (from Mr. Fox)

  717

  57

1000 : 79

Weight of Skeleton as above.

Weight of Humerus, Radius and Ulna, and Metacarpus.

Grains.

Grains.

Wild mallard

  839

  97

1000 : 115

Aylesbury

1925

204

1000 : 105

Tufted (Dutch)

1404

148

1000 : 105

Penguin

  871

  90

1000 : 103

Call (from Mr. Baker)

  914

100

1000 : 109

Call (from Mr. Fox)

  717

  92

1000 : 129


Lastly, I weighed the furcula, coracoids, and scapula of a wild duck and of a common domestic duck, and I found that their weight, relatively to that of the whole skeleton, was as one hundred in the former to eighty-nine in the latter; this shows that these bones in the domestic duck have been reduced eleven per cent. of their due proportional weight. The prominence of the crest of the sternum, relatively to its length, is also much reduced in all the domestic breeds. These changes have evidently been caused by the lessened use of the wings.

It is well known that several birds, belonging to different Orders, and inhabiting oceanic islands, have their wings greatly reduced in size and are incapable of flight. I suggested in my 'Origin of Species' that, as these birds are not persecuted by any enemies, the reduction of their wings has probably been caused by gradual disuse. Hence, during the earlier stages of the [ 287 ] process of reduction, such birds might be expected to resemble in the state of their organs of flight our domesticated ducks. This is the case with the water-hen (Gallinula nesiotis) of Tristan d'Acunha, which "can flutter a little, but obviously uses its legs, and not its wings, as a mode of escape." Now Mr. Sclater[454] finds in this bird that the wings, sternum, and coracoids, are all reduced in length, and the crest of the sternum in depth, in comparison with the same bones in the European water-hen (G. chloropus). On the other hand, the thigh-bones and pelvis are increased in length, the former by four lines, relatively to the same bones in the common water-hen. Hence in the skeleton of this natural species nearly the same changes have occurred, only carried a little further, as with our domestic ducks, and in this latter case I presume no one will dispute that they have resulted from the lessened use of the wings and the increased use of the legs.

The Goose.

This bird deserves some notice, as hardly any other anciently domesticated bird or quadruped has varied so little. That geese were anciently domesticated we know from certain verses in Homer; and from these birds having been kept (388 B.C.) in the Capitol at Rome as sacred to Juno, which sacredness implies great antiquity[455]. That the goose has varied in some degree, we may infer from naturalists not being unanimous with respect to its wild parent-form; though the difficulty is chiefly due to the existence of three or four closely allied wild European species[456]. A large majority of capable judges are convinced that our geese are descended from the wild Grey-lag goose (A. ferus); the young of which can easily be tamed,[457] and are domesticated by the Laplanders. This species, when crossed with the domestic goose, produced in the Zoological Gardens, as I was assured in [ 288 ] 1849, perfectly fertile offspring.[458] Yarrell[459] has observed that the lower part of the trachea of the domestic goose is sometimes flattened, and that a ring of white feathers sometimes surrounds the base of the beak. These characters seem at first good indications of a cross at some former period with the white-fronted goose (A. albifrons); but the white ring is variable in this latter species, and we must not overlook the law of analogous variation; that is, of one species assuming some of the characters of allied species.

As the goose has proved so inflexible in its organization under long-continued domestication, the amount of variation which can be detected is worth giving. It has increased in size and in productiveness;[460] and varies from white to a dusky colour. Several observers[461] have stated that the gander is more frequently white than the goose, and that when old it almost invariably becomes white; but this is not the case with the parent-form, the A. ferus. Here, again, the law of analogous variation may have come into play, as the snow-white male of the Rock-Goose (Bernicla antarctica) standing on the sea-shore by his dusky partner is a sight well known to all those who have traversed the sounds of Tierra del Fuego and the Falkland Islands. Some geese have topknots; and the skull beneath, as before stated, is perforated. A sub-breed has lately been formed with the feathers reversed at the back of the head and neck.[462] The beak varies a little in size, and is of a yellower tint than in the wild species; but its colour and that of the legs are both slightly variable.[463] This latter fact deserves attention, because the colour of the legs and beak is highly serviceable in discriminating the several closely allied wild forms.[464] At our [ 289 ] Shows two breeds are exhibited; viz. the Embden and Toulouse; but they differ in nothing except colour.[465] Recently a smaller and singular variety has been imported from Sebastopol,[466] with the scapular feathers (as I hear from Mr. Tegetmeier, who sent me specimens) greatly elongated, curled, and even spirally twisted. The margins of these feathers are rendered plumose by the divergence of the barbs and barbules, so that they resemble in some degree those on the back of the black Australian swan. These feathers are likewise remarkable from the central shaft, which is excessively thin and transparent, being split into fine filaments, which, after running for a space free, sometimes coalesce again. It is a curious fact that these filaments are regularly clothed on each side with fine down or barbules, precisely like those on the proper barbs of the feather. This structure of the feathers is transmitted to half-bred birds. In Gallus sonneratii the barbs and barbules blend together, and form thin horny plates of the same nature with the shaft: in this variety of the goose, the shaft divides into filaments which acquire barbules, and thus resemble true barbs.

Although the domestic goose certainly differs somewhat from any known wild species, yet the amount of variation which it has undergone, as compared with most domesticated animals, is singularly small. This fact can be partially accounted for by selection not having come largely into play. Birds of all kinds which present many distinct races are valued as pets or ornaments; no one makes a pet of the goose; the name, indeed, in more languages than one, is a term of reproach. The goose is valued for its size and flavour, for the whiteness of its feathers which adds to their value, and for its prolificness and tameness. In all these points the goose differs from the wild parent-form; and these are the points which have been selected. Even in ancient times the Roman gourmands valued the liver of the white goose; and Pierre Belon[467] in 1555 speaks of two varieties, one of which was larger, more fecund, and of a better colour than the other; and he expressly states that good managers [ 290 ] attended to the colour of their goslings, so that they might know which to preserve and select for breeding.

The Peacock.

This is another bird which has hardly varied under domestication, except in sometimes being white or piebald. Mr. Waterhouse carefully compared, as he informs me, skins of the wild Indian and domestic bird, and they were identical in every respect, except that the plumage of the latter was perhaps rather thicker. Whether our birds are descended from those introduced into Europe in the time of Alexander, or have been subsequently imported, is doubtful. They do not breed very freely with us, and are seldom kept in large numbers,—circumstances which would greatly interfere with the gradual selection and formation of new breeds.

There is one strange fact with respect to the peacock, namely, the occasional appearance in England of the "japanned" or "black-shouldered" kind. This form has lately been named on the high authority of Mr. Sclater as a distinct species, viz. Pavo nigripennis, which he believes will hereafter be found wild in some country, but not in India, where it is certainly unknown. These japanned birds differ conspicuously from the common peacock in the colour of their secondary wing-feathers, scapulars, wing-coverts, and thighs; the females are much paler, and the young, as I hear from Mr. Bartlett, likewise differ. They can be propagated perfectly true. Although they do not resemble the hybrids which have been raised between P. cristatus and muticus, nevertheless they are in some respects intermediate in character between these two species; and this fact favours, as Mr. Sclater believes, the view that they form a distinct and natural species.[468]

On the other hand, Sir R. Heron states[469] that this breed suddenly appeared within his memory in Lord Brownlow's large stock of pied, white, and common peacocks. The same thing occurred in Sir J. Trevelyan's flock composed entirely of the [ 291 ] common kind, and in Mr. Thornton's stock of common and pied peacocks. It is remarkable that in these two latter instances the black-shouldered kind increased, "to the extinction of the previously existing breed." I have also received through Mr. Sclater a statement from Mr. Hudson Gurney that he reared many years ago a pair of black-shouldered peacocks from the common kind; and another ornithologist, Prof. A. Newton, states that, five or six years ago, a female bird, in all respects similar to the female of the black-shouldered kind, was produced from a stock of common peacocks in his possession, which during more than twenty years had not been crossed with birds of any other strain. Here we have five distinct cases of japanned birds suddenly appearing in flocks of the common kind kept in England. Better evidence of the first appearance of a new variety could hardly be desired. If we reject this evidence, and believe that the japanned peacock is a distinct species, we must suppose in all these cases that the common breed had at some former period been crossed with the supposed P. nigripennis, but had lost every trace of the cross, yet that the birds occasionally produced offspring which suddenly and completely reacquired through reversion the characters of P. nigripennis. I have heard of no other such case in the animal or vegetable kingdom. To perceive the full improbability of such an occurrence, we may suppose that a breed of dogs had been crossed at some former period with a wolf, but had lost every trace of the wolf-like character, yet that the breed gave birth in five instances in the same country, within no great length of time, to a wolf perfect in every character; and we must further suppose that in two of the cases the newly produced wolves afterwards spontaneously increased to such an extent as to lead to the extinction of the parent-breed of dogs. So remarkable a form as the P. nigripennis, when first imported, would have realized a large price; it is therefore improbable that it should have been silently introduced and its history subsequently lost. On the whole the evidence seems to me, as it did to Sir R. Heron, to preponderate strongly in favour of the black-shouldered breed being a variation, induced either by the climate of England, or by some unknown cause, such as reversion to a primordial and extinct condition of the species. On the view that the black-shouldered [ 292 ] peacock is a variety, the case is the most remarkable ever recorded of the abrupt appearance of a new form, which so closely resembles a true species that it has deceived one of the most experienced of living ornithologists.

The Turkey.

It seems fairly well established by Mr. Gould,[470] that the turkey, in accordance with the history of its first introduction, is descended from a wild Mexican species (Meleagris Mexicana) which had been already domesticated by the natives before the discovery of America, and which differs specifically, as it is generally thought, from the common wild species of the United States. Some naturalists, however, think that these two forms should be ranked only as well-marked geographical races. However this may be, the case deserves notice because in the United States wild male turkeys sometimes court the domestic hens, which are descended from the Mexican form, "and are generally received by them with great pleasure."[471] Several accounts have likewise been published of young birds, reared in the United States from the eggs of the wild species, crossing and commingling with the common breed. In England, also, this same species has been kept in several parks; from two of which the Rev. W. D. Fox procured birds, and they crossed freely with the common domestic kind, and during many years afterwards, as he informs me, the turkeys in his neighbourhood clearly showed traces of their crossed parentage. We here have an instance of a domestic race being modified by a cross with a distinct species or wild race. F. Michaux[472] suspected in 1802 that the common domestic turkey was not descended from the United States species alone, but likewise from a southern form, and he went so far as to believe that English and French [ 293 ] turkeys differed from having different proportions of the blood of the two parent-forms.

English turkeys are smaller than either wild form. They have not varied in any great degree; but there are some breeds which can be distinguished—as Norfolks, Suffolks, Whites, and Copper-coloured (or Cambridge), all of which, if precluded from crossing with other breeds, propagate their kind truly. Of these kinds, the most distinct is the small, hardy, dull-black Norfolk turkey, of which the chickens are black, with occasionally white patches about the head. The other breeds scarcely differ except in colour, and their chickens are generally mottled all over with brownish-grey.[473] The tuft of hair on the breast, which is proper to the male alone, occasionally appears on the breast of the domesticated female.[474] The inferior tail-coverts vary in number, and according to a German superstition the hen lays as many eggs as the cock has feathers of this kind.[475] In Holland there was formerly, according to Temminck, a beautiful buff-yellow breed, furnished with an ample white topknot. Mr. Wilmot has described[476] a white turkey-cock with a crest formed of "feathers about four inches long, with bare quills, and a tuft of soft white down growing at the end." Many of the young birds whilst young inherited this kind of crest, but afterwards it either fell off or was pecked out by the other birds. This is an interesting case, as with care a new breed might probably have been formed; and a topknot of this nature would have been to a certain extent analogous to that borne by the males in several allied genera, such as Euplocomus, Lophophorus, and Pavo.

Wild turkeys, believed in every instance to have been imported from the United States, have been kept in the parks of Lords Powis, Leicester, Hill, and Derby. The Rev. W. D. Fox procured birds from the two first-named parks, and he informs me that they certainly differed a little from each other in the shape of their bodies and in the barred plumage on their wings. These birds likewise differed from Lord Hill's stock. Some of the latter kept at Oulton by Sir P. Egerton, though precluded from [ 294 ] crossing with common turkeys, occasionally produced much paler-coloured birds, and one that was almost white, but not an albino. These half-wild turkeys in thus slightly differing from each other present an analogous case with the wild cattle kept in the several British parks. We must suppose that the differences have resulted from the prevention of free intercrossing between birds ranging over a wide area, and from the changed conditions to which they have been exposed in England. In India the climate has apparently wrought a still greater change in the turkey, for it is described by Mr. Blyth[477] as being much degenerated in size, "utterly incapable of rising on the wing," of a black colour, and "with the long pendulous appendages over the beak enormously developed."

The Guinea Fowl.

The domesticated guinea-fowl is now believed by naturalists to be descended from the Numida ptilorhynca, which inhabits very hot, and, in parts, extremely arid districts in Eastern Africa; consequently it has been exposed in this country to extremely different conditions of life. Nevertheless it has hardly varied at all, except in the plumage being either paler or darker-coloured. It is a singular fact that this bird varies more in colour in the West Indies and on the Spanish Main, under a hot though humid climate, than in Europe.[478] The guinea-fowl has become thoroughly feral in Jamaica and in St. Domingo,[479] and has diminished in size; the legs are black, whereas the legs of the aboriginal African bird are said to be grey. This small change is worth notice on account of the often-repeated statement that all feral animals invariably revert in every character to their original type.

[ 295 ]

The Canary Bird.

As this bird has been recently domesticated, namely, within the last 350 years, its variability deserves notice. It has been crossed with nine or ten other species of Fringillidæ, and some of the hybrids are almost completely fertile; but we have no evidence that any distinct breed has originated from such crosses. Notwithstanding the modern domestication of the canary, many varieties have been produced; even before the year 1718 a list of twenty-seven varieties was published in France,[480] and in 1779 a long schedule of the desired qualities was printed by the London Canary Society, so that methodical selection has been practised during a considerable period. The greater number of the varieties differ only in colour and in the markings of their plumage. Some breeds, however, differ in shape, such as the hooped or bowed canaries, and the Belgian canaries with their much elongated bodies. Mr. Brent[481] measured one of the latter and found it eight inches in length, whilst the wild canary is only five and a quarter inches long. There are topknotted canaries, and it is a singular fact, that, if two topknotted birds are matched, the young, instead of having very fine topknots, are generally bald, or even have a wound on their heads.[482] It would appear as if the topknot were due to some morbid condition which is increased to an injurious degree when two birds in this state are paired. There is a feather-footed breed, and another with a kind of frill running down the breast. One other character deserves notice from being confined to one period of life and from being strictly inherited at the same period: namely, the wing and tail feathers in prize canaries being black, "but this colour is retained only until the first moult; once moulted, the peculiarity ceases."[483] Canaries differ much in disposition and character, and in some small degree in song. They produce eggs three or four times during the year.

[ 296 ]

Gold-Fish.

Besides mammals and birds, few animals belonging to the other great classes have been domesticated; but to show that it is an almost universal law that animals, when removed from their natural conditions of life, vary, and that races can be formed when selection is applied, it is necessary to say a few words on gold-fish, bees, and silk-moths.

Gold-fish (Cyprinus auratus) were introduced into Europe only two or three centuries ago; but it is believed that they have been kept in confinement from an ancient period in China. Mr. Blyth[484] suspects from the analogous variation of other fishes that golden-coloured fish do not occur in a state of nature. These fishes frequently live under the most unnatural conditions, and their variability in colour, size, and in some important points of structure is very great. M. Sauvigny has described and given coloured drawings of no less than eighty-nine varieties.[485] Many of the varieties, however, such as triple tail-fins, &c., ought to be called monstrosities; but it is difficult to draw any distinct line between a variation and a monstrosity. As gold-fish are kept for ornament or curiosity, and as "the Chinese are just the people to have secluded a chance variety of any kind, and to have matched and paired from it,"[486] we may feel nearly confident that selection has been largely practised in the formation of new breeds. It is however a singular fact that some of the monstrosities or variations are not inherited; for Sir R. Heron[487] kept many of these fishes, and placed all the deformed fishes, namely those destitute of dorsal fins, and those furnished with a double anal fin, or triple tail, in a pond by themselves; but they did "not produce a greater proportion of deformed offspring than the perfect fishes."

Passing over an almost infinite diversity of colour, we meet with the most extraordinary modifications of structure. Thus, out of about two dozen specimens bought in London, Mr. Yarrell observed some with the dorsal fin extending along more than [ 297 ] half the length of the back; others with this fin reduced to only five or six rays; and one with no dorsal fin. The anal fins are sometimes double, and the tail is often triple. This latter deviation of structure seems generally to occur "at the expense of the whole or part of some other fin;"[488] but Bory de Saint Vincent[489] saw at Madrid gold-fish furnished with a dorsal fin and a triple tail. One variety is characterized by a hump on its back near the head; and the Rev. L. Jenyns[490] has described a most singular variety, imported from China, almost globular in form like a Diodon, with "the fleshy part of the tail as if entirely cut away; the caudal fin being set on a little behind the dorsal and immediately above the anal." In this fish the anal and caudal fins were double; the anal fin being attached to the body in a vertical line: the eyes also were enormously large and protuberant.

Hive-Bees.

Bees have been domesticated from an ancient period; if indeed their state can be considered one of domestication, for they search for their own food, with the exception of a little generally given to them during the winter. Their habitation is a hive instead of a hole in a tree. Bees, however, have been transported into almost every quarter of the world, so that climate ought to have produced whatever direct effect it is capable of producing. It is frequently asserted that the bees in different parts of Great Britain differ in size, colour, and temper; and Godron[491] says that they are generally larger in the south than in other parts of France; it has also been asserted that the little brown bees of High Burgundy, when transported to La Bresse, become large and yellow in the second generation. But these statements require confirmation. As far as size is concerned, it is known that bees produced in very old combs are smaller, owing to the cells having become smaller from the [ 298 ] successive old cocoons. The best authorities[492] concur that, with the exception of the Ligurian race or species, presently to be mentioned, distinct breeds do not exist in Britain or on the Continent. There is, however, even in the same stock, some variability in colour. Thus Mr. Woodbury states[493] that he has several times seen queen bees of the common kind annulated with yellow like Ligurian queens, and the latter dark-coloured like common bees. He has also observed variations in the colour of the drones, without any corresponding difference in the queens or workers of the same hive. The great apiarian Dzierzon, in answer to my queries on this subject, says[494] that in Germany bees of some stocks are decidedly dark, whilst others are remarkable for their yellow colour. Bees also seem to differ in habits in different districts, for Dzierzon adds, "If many stocks with their offspring are more inclined to swarm, whilst others are richer in honey, so that some bee-keepers even distinguish between swarming and honey-gathering bees, this is a habit which has become second nature, caused by the customary mode of keeping the bees and the pasturage of the district. For example; what a difference in this respect one may perceive to exist between the bees of the Lüneburg heath and those of this country!"... "Removing an old queen and substituting a young one of the current year is here an infallible mode of keeping the strongest stock from swarming and preventing drone-breeding; whilst the same means if adopted in Hanover would certainly be of no avail." I procured a hive full of dead bees from Jamaica, where they have long been naturalised, and, on carefully comparing them under the microscope with my own bees, I could detect not a trace of difference.

This remarkable uniformity in the hive-bee, wherever kept, may probably be accounted for by the great difficulty, or rather impossibility, of bringing selection into play by pairing particular queens and drones, for these insects unite only during [ 299 ] flight. Nor is there any record, with a single partial exception, of any person having separated and bred from a hive in which the workers presented some appreciable difference. In order to form a new breed, seclusion from other bees would, as we now know, be indispensable; for since the introduction of the Ligurian bee into Germany and England, it has been found that the drones wander at least two miles from their own hives, and often cross with the queens of the common bee.[495] The Ligurian bee, although perfectly fertile when crossed with the common kind, is ranked by most naturalists as a distinct species, whilst by others it is ranked as a natural variety: but this form need not here be noticed, as there is no reason to believe that it is the product of domestication. The Egyptian and some other bees are likewise ranked by Dr. Gerstäcker,[496] but not by other highly competent judges, as geographical races; and he grounds his conclusion in chief part on the fact that in certain districts, as in the Crimea and Rhodes, the hive-bee varies so much in colour, that the several geographical races can be closely connected by intermediate forms.

I have alluded to a single instance of the separation and preservation of a particular stock of bees. Mr. Lowe[497] procured some bees from a cottager a few miles from Edinburgh, and perceived that they differed from the common bee in the hairs on the head and thorax being lighter coloured and more profuse in quantity. From the date of the introduction of the Ligurian bee into Great Britain we may feel sure that these bees had not been crossed with this form. Mr. Lowe propagated this variety, but unfortunately did not separate the stock from his other bees, and after three generations the new character was almost completely lost. Nevertheless, as he adds, "a great number of the bees still retain traces, though faint, of the original colony." This case shows us what could probably be effected by careful and long-continued selection applied exclusively to the workers, for, as we have seen, queens and drones cannot be selected and paired.

[ 300 ]

Silk-Moths.

These insects are in several respects interesting to us, more especially because they have varied largely at early periods of life, and the variations have been inherited at corresponding periods. As the value of the silk-moth depends entirely on the cocoon, every change in its structure and qualities has been carefully attended to, and races differing much in the cocoon, but hardly at all in the adult state, have been produced. With the races of most other domestic animals, the young resemble each other closely, whilst the adults differ much.

It would be useless, even if it were possible, to describe all the many kinds of silk-worms. Several distinct species exist in India and China which produce useful silk, and some of these are capable of freely crossing with the common silk-moth, as has been recently ascertained in France. Captain Hutton[498] states that throughout the world at least six species have been domesticated; and he believes that the silk-moths reared in Europe belong to two or three species. This, however, is not the opinion of several capable judges who have particularly attended to the cultivation of this insect in France; and hardly accords with some facts presently to be given.

The common silk-moth (Bombyx mori) was brought to Constantinople in the sixth century, whence it was carried into Italy, and in 1494 into France.[499] Everything has been favourable for the variation of this insect. It is believed to have been domesticated in China as long ago as 2700 B.C. It has been kept under unnatural and diversified conditions of life, and has been transported into many countries. There is reason to believe that the nature of the food given to the caterpillar influences to a certain extent the character of the breed.[500] Disuse has apparently aided in checking the development of the wings. But the most important element in the production of the many now existing, much modified races, no doubt has [ 301 ] been the close attention which has long been applied in many countries to every promising variation. The care taken in Europe in the selection of the best cocoons and moths for breeding is notorious,[501] and the production of eggs is followed as a distinct trade in parts of France. I have made inquiries through Dr. Falconer, and am assured that in India the natives are equally careful in the process of selection. In China the production of eggs is confined to certain favourable districts, and the raisers are precluded by law from producing silk, so that their whole attention may be necessarily given up to this one object.[502]

The following details on the differences between the several breeds are taken, when not stated to the contrary, from M. Robinet's excellent work,[503] which bears every sign of care and large experience. The eggs in the different races vary in colour, in shape (being round, elliptic, or oval), and in size. The eggs laid in June in the south of France, and in July in the central provinces, do not hatch until the following spring; and it is in vain, says M. Robinet, to expose them to a temperature gradually raised, in order that the caterpillar may be quickly developed. Yet occasionally, without any known cause, batches of eggs are produced, which immediately begin to undergo the proper changes, and are hatched in from twenty to thirty days. From these and some other analogous facts it may be concluded that the Trevoltini silkworms of Italy, of which the caterpillars are hatched in from fifteen to twenty days, do not necessarily form, as has been maintained, a distinct species. Although the breeds which live in temperate countries produce eggs which cannot be immediately hatched by artificial heat, yet when they are removed to and reared in a hot country they gradually acquire the character of quick development, as in the Trevoltini races.[504]
Caterpillars.—These vary greatly in size and colour. The skin is generally white, sometimes mottled with black or grey, and occasionally quite black. The colour, however, as M. Robinet asserts, is not constant, even in perfectly pure breeds; except in the race tigrée, so called from being marked with transverse black stripes. As the general colour of the caterpillar is not correlated with that of the silk,[505] this character is disregarded [ 302 ] by cultivators, and has not been fixed by selection. Captain Hutton, in the paper before referred to, has argued with much force that the dark tiger-like marks, which so frequently appear during the later moults in the caterpillars of various breeds, are due to reversion; for the caterpillars of several allied wild species of Bombyx are marked and coloured in this manner. He separated some caterpillars with the tiger-like marks, and in the succeeding spring (pp. 149, 298) nearly all the caterpillars reared from them were dark-brindled, and the tints became still darker in the third generation. The moths reared from these caterpillars[506] also became darker, and resembled in colouring the wild B. Huttoni. On this view of the tiger-like marks being due to reversion, the persistency with which they are transmitted is intelligible.
Several years ago Mrs. Whitby took great pains in breeding silkworms on a large scale, and she informed me that some of her caterpillars had dark eyebrows. This is probably the first step in reversion towards the tiger-like marks, and I was curious to know whether so trifling a character would be inherited; at my request she separated in 1848 twenty of these caterpillars, and having kept the moths separate, bred from them. Of the many caterpillars thus reared, "every one without exception had eyebrows, some darker and more decidedly marked than the others, but all had eyebrows more or less plainly visible." Black caterpillars occasionally appear amongst those of the common kind, but in so variable a manner, that according to M. Robinet the same race will one year exclusively produce white caterpillars, and the next year many black ones; nevertheless, I have been informed by M. A. Bossi of Geneva, that, if these black caterpillars are separately bred from, they reproduce the same colour; but the cocoons and moths reared from them do not present any difference.
The caterpillar in Europe ordinarily moults four times before passing into the cocoon stage; but there are races "à trois mues," and the Trevoltini race likewise moults only thrice. It might have been thought that so important a physiological difference would not have arisen under domestication; but M. Robinet[507] states that, on the one hand, ordinary caterpillars occasionally spin their cocoons after only three moults, and, on the other hand, "presque toutes les races à trois mues, que nous avons expérimentées, ont fait quatre mues à la seconde ou à la troisième année, ce qui semble prouver qu'il a suffi de les placer dans des conditions favorables pour leur rendre une faculté qu'elles avaient perdue sous des influences moins favorables."
Cocoons.—The caterpillar in changing into the cocoon loses about 50 per cent. of its weight; but the amount of loss differs in different breeds, and this is of importance to the cultivator. The cocoon in the different races presents characteristic differences; being large or small;—nearly spherical with no constriction, as in the Race de Loriol, or cylindrical with either a deep or slight constriction in the middle;—with the two ends, or with one end alone, more or less pointed. The silk varies in fineness and quality, and in being nearly white, of two tints, or yellow. Generally the colour of [ 303 ] the silk is not strictly inherited: but in the chapter on Selection I shall give a curious account how, in the course of sixty-five generations, the number of yellow cocoons in one breed has been reduced in France from one hundred to thirty-five in the thousand. According to Robinet, the white race, called Sina, by careful selection during the last seventy-five years, "est arrivée à un tel état de pureté, qu'on ne voit pas un seul cocon jaune dans des millions de cocons blancs."[508] Cocoons are sometimes formed, as is well known, entirely destitute of silk, which yet produce moths; unfortunately Mrs. Whitby was prevented by an accident from ascertaining whether this character would prove hereditary.
Adult stage.—I can find no account of any constant difference in the moths of the most distinct races. Mrs. Whitby assured me that there was none in the several kinds bred by her; and I have received a similar statement from the eminent naturalist M. de Quatrefages. Captain Hutton also says[509] that the moths of all kinds vary much in colour, but in nearly the same inconstant manner. Considering how much the cocoons in the several races differ, this fact is of interest, and may probably be accounted for on the same principle as the fluctuating variability of colour in the caterpillar, namely, that there has been no motive for selecting and perpetuating any particular variation.
The males of the wild Bombycidæ "fly swiftly in the day-time and evening, but the females are usually very sluggish and inactive."[510] In several moths of this family the females have abortive wings, but no instance is known of the males being incapable of flight, for in this case the species could hardly have been perpetuated. In the silk-moth both sexes have imperfect, crumpled wings, and are incapable of flight; but still there is a trace of the characteristic difference in the two sexes; for though, on comparing a number of males and-females, I could detect no difference in the development of their wings, yet I was assured by Mrs. Whitby that the males of the moths bred by her used their wings more than the females, and could flutter downwards, though never upwards. She also states that, when the females first emerge from the cocoon, their wings are less expanded than those of the male. The degree of imperfection, however, in the wings varies much in different races and under different circumstances; M. Quatrefages[511] says that he has seen a number of moths with their wings reduced to a third, fourth, or tenth part of their normal dimensions, and even to mere short straight stumps: "il me semble qu'il y a là un véritable arrêt de développement partiel." On the other hand, he describes the female moths of the André Jean breed as having "leurs ailes larges et étalées. Un seul présente quelques courbures irrégulières et des plis anomaux." As moths and butterflies of all kinds reared from wild caterpillars under confinement often have crippled wings, the same cause, whatever it may be, has probably acted on [ 304 ] silk-moths, but the disuse of their wings during so many generations has, it may be suspected, likewise come into play.
The moths of many breeds fail to glue their eggs to the surface on which they are laid,[512] but this proceeds, according to Capt. Hutton,[513] merely from the glands of the ovipositor being weakened.
As with other long-domesticated animals, the instincts of the silk-moth have suffered. The caterpillars, when placed on a mulberry-tree, often commit the strange mistake of devouring the base of the leaf on which they are feeding, and consequently fall down; but they are capable, according to M. Robinet,[514] of again crawling up the trunk. Even this capacity sometimes fails, for M. Martins[515] placed some caterpillars on a tree, and those which fell were not able to remount and perished of hunger; they were even incapable of passing from leaf to leaf.
Some of the modifications which the silk-moth has undergone stand in correlation with each other. Thus the eggs of the moths which produce white cocoons and of those which produce yellow cocoons differ slightly in tint. The abdominal feet also of the caterpillars which yield white cocoons are always white, whilst those which give yellow cocoons are invariably yellow.[516] We have seen that the caterpillars with dark tiger-like stripes produce moths which are more darkly shaded than other moths. It seems well established[517] that in France the caterpillars of the races which produce white silk, and certain black caterpillars, have resisted, better than other races, the disease which has recently devastated the silk-districts. Lastly, the races differ constitutionally, for some do not succeed so well under a temperate climate as others; and a damp soil does not equally injure all the races.[518]

From these various facts we learn that silk-moths, like the higher animals, vary greatly under long-continued domestication. We learn also the more important fact that variations may occur at various periods of life, and be inherited at corresponding periods. And finally we see that insects are amenable to the great principle of Selection.


436 ^  'Poultry Chronicle' (1854), vol. ii. p.91, and vol. i. p. 330.

437 ^  Dr. Turral, in 'Bull. Soc. d'Acclimat.,' tom. vii., 1860, p. 541.

438 ^  Willughby's 'Ornithology,' by Ray, p. 381. This breed is also figured by Albin, in 1734, in his 'Nat. Hist. of Birds,' vol. ii. p. 86.

439 ^  F. Cuvier, in 'Annales du Muséum,' tom. ix. p. 128, says that moulting and incubation alone stop these ducks laying. Mr. B. P. Brent makes a similar remark in the 'Poultry Chronicle,' 1855, vol. iii. p. 512.

440 ^  Rev. E. S. Dixon, 'Ornamental and Domestic Poultry' (1848), p. 117. Mr. B. P. Brent, in 'Poultry Chronicle,' vol. iii., 1855, p. 512.

441 ^  Crawfurd on the 'Relation of Domesticated Animals to Civilisation,' read before the Brit. Assoc. at Oxford, 1860.

442 ^  Dureau de la Malle, in 'Annales des Sciences Nat.,' tom. xvii. p. 164; and tom. xxi. p. 55. Rev. E. S. Dixon, 'Ornamental Poultry,' p. 118. Tame ducks were not known in Aristotle's time, as remarked by Volz, in his 'Beiträge zur Kulturgeschichte,' 1852, s. 78.

443 ^  I quote this account from 'Die Enten, Schwanen-zucht,' Ulm, 1828, s. 143. See Audubon's 'Ornithological Biography,' vol. iii. p. 168, on the taming of ducks on the Mississippi. For the same fact in England, see Mr. Waterton, in Loudon's 'Mag. of Nat. Hist.,' vol. viii., 1835, p. 542; and Mr. St. John, 'Wild Sports and Nat. Hist. of the Highlands,' 1846, p. 129.

444 ^  Mr. E. Hewitt, in 'Journal of Horticulture,' 1862, p. 773; and 1863, p. 39.

445 ^  I have met with several statements on the fertility of the several breeds when crossed. Mr. Yarrell assured me that Call and common ducks are perfectly fertile together. I crossed Hook-billed and common ducks, and a Penguin and Labrador, and the crossed ducks were quite fertile, though they were not bred inter se, so that the experiment was not fully tried. Some half-bred Penguins and Labradors were again crossed with Penguins, and subsequently bred by me inter se, and they were extremely fertile.

446 ^  'Poultry Chronicle,' 1855, vol. iii. p. 512.

447 ^  'Journal of the Indian Archipelago,' vol. v. p. 334.

448 ^  'The Zoologist,' vols. vii., viii. (1849-1850), p. 2353.

449 ^  'Poultry Chronicle,' 1855, vol. iii. p. 512.

450 ^  'Poultry Chronicle,' vol. iii., 1855, p. 312. With respect to Rouens, see ditto, vol. i., 1854, p. 167.

451 ^  Col. Hawker's 'Instructions to young Sportsmen,' quoted by Mr. Dixon in his 'Ornamental Poultry,' p. 125.

452 ^  'Cottage Gardener,' April 9th, 1861.

453 ^  These hybrids have been described by M. Selys-Longchamps in the 'Bulletins (tom. xii. No. 10) Acad. Roy. de Bruxelles.'

454 ^  'Proc. Zoolog. Soc.,' 1861, p. 261.

455 ^  'Ceylon,' by Sir J. E. Tennent, 1859, vol. i. p. 485; also J. Crawfurd on the 'Relation of Domest. Animals to Civilisation,' read before Brit. Assoc., 1860. See also 'Ornamental Poultry,' by Rev. E. S. Dixon, 1848, p. 132. The goose figured on the Egyptian monuments seems to have been the Red goose of Egypt.

456 ^  Macgillivray's 'British Birds,' vol. iv. p. 593.

457 ^  Mr. A. Strickland ('Annals and Mag. of Nat. Hist.,' 3rd Series, vol. iii. 1859, p. 122) reared some young wild geese, and found them in habits and in all characters identical with the domestic goose.

458 ^  See also Hunter's 'Essays,' edited by Owen, vol. ii. p. 322.

459 ^  Yarrell's 'British Birds,' vol. iii. p. 142. He refers to the Laplanders domesticating the goose.

460 ^  L. Lloyd, 'Scandinavian Adventures,' 1854, vol. ii. p. 413, says that the wild goose lays from five to eight eggs, which is a much fewer number than that laid by our domestic goose.

461 ^  The Rev. L. Jenyns seems first to have made this observation in his 'British Animals.' See also Yarrell, and Dixon in his 'Ornamental Poultry' (p. 139), and 'Gardener's Chronicle,' 1857, p. 45.

462 ^  Mr. Bartlett exhibited the head and neck of a bird thus characterised at the Zoological Soc., Feb. 1860.

463 ^  W. Thompson, 'Natural Hist. of Ireland,' 1851, vol. iii. p. 31. The Rev. E. S. Dixon gave me some information on the varying colour of the beak and legs.

464 ^  Mr. A. Strickland, in 'Annals and Mag. of Nat. Hist.,' 3rd series, vol. iii., 1859, p. 122.

465 ^  'Poultry Chronicle,' vol. i., 1854, p. 498; vol. iii. p. 210.

466 ^  'The Cottage Gardener,' Sept. 4th, 1860, p. 348.

467 ^  'L'Hist. de la Nature des Oiseaux,' par P. Belon, 1555, p. 156. With respect to the livers of white geese being preferred by the Romans, see Isid. Geoffroy St. Hilaire, 'Hist. Nat. Gén.,' tom. iii. p. 58.

468 ^  Mr. Sclater on the black-shouldered peacock of Latham, 'Proc. Zoolog. Soc.,' April 24th, 1860.

469 ^  'Proc. Zoolog. Soc.,' April 14th, 1835.

470 ^  'Proc. Zoolog. Soc.,' April 8th, 1856, p. 61. Prof. Baird believes (as quoted in Tegetmeier's 'Poultry Book,' 1866, p. 269) that our turkeys are descended from a West Indian species now extinct. But besides the improbability of a bird having long ago become extinct in these large and luxuriant islands, it appears (as we shall presently see) that the turkey degenerates in India, and this fact indicates that it was not aboriginally an inhabitant of the lowlands of the tropics.

471 ^  Audubon's 'Ornithological Biograph.,' vol. i., 1831, pp. 4-13; and 'Naturalist's Library,' vol. xiv., Birds, p. 138.

472 ^  F. Michaux, 'Travels in N. America,' 1802, Eng. translat., p. 217.

473 ^  'Ornamental Poultry,' by the Rev. E. S. Dixon, 1848, p. 34.

474 ^  Rev. E. S. Dixon, id., p. 35.

475 ^  Bechstein, 'Naturgesch. Deutschlands,' B. iii., 1793, s. 309.

476 ^  'Gardener's Chronicle,' 1852, p. 699.

477 ^  E. Blyth, in 'Annals and Mag. of Nat. Hist.,' 1847, vol. xx. p. 391.

478 ^  Roulin makes this remark in 'Mém. de divers Savans, l'Acad. des Sciences,' tom. vi., 1835, p. 349. Mr. Hill, of Spanish Town, in a letter to me, describes five varieties of the guinea-fowl in Jamaica. I have seen singular pale-coloured varieties imported from Barbadoes and Demerara.

479 ^  For St. Domingo, see M. A. Salle, in 'Proc. Soc. Zoolog.,' 1857, p. 236. Mr. Hill remarks to me, in his letter, on the colour of the legs of the feral birds in Jamaica.

480 ^  Mr. B. P. Brent, 'The Canary, British Finches,' &c., pp. 21, 30.

481 ^  'Cottage Gardener,' Dec. 11th, 1855, p. 184. An account is here given of all the varieties. For many measurements of the wild birds, see Mr. E. Vernon Harcourt, id., Dec. 25th, 1855, p. 223.

482 ^  Bechstein, 'Naturgesch. der Stubenvögel,' 1840, s. 243; see s. 252, on the inherited song of Canary-birds. With respect to their baldness, see also W. Kidd's 'Treatise on Song-Birds.'

483 ^  W. Kidd's 'Treatise on Song-Birds,' p. 18.

484 ^  The 'Indian Field,' 1858, p. 255.

485 ^  Yarrell's 'British Fishes,' vol. i, p. 319.

486 ^  Mr. Blyth, in the 'Indian Field,' 1858, p. 255.

487 ^  'Proc. Zoolog. Soc.,' May 25th. 1842.

488 ^  Yarrell's 'British Fishes,' vol. i. p. 319.

489 ^  'Dict. Class. d'Hist. Nat.,' tom. v. p. 276.

490 ^  'Observations in Nat. Hist.,' 1846, p. 211. Dr. Gray has described, in 'Annals and Mag. of Nat. Hist.,' 1860, p. 151, a nearly similar variety, but destitute of a dorsal fin.

491 ^  'De l'Espèce,' 1859, p. 459. With respect to the bees of Burgundy, see M. Gérard, art. 'Espèce,' in 'Dict. Univers. d'Hist. Nat.'

492 ^  See a discussion on this subject, in answer to a question of mine, in 'Journal of Horticulture,' 1862, pp. 225-242; also Mr. Bevan Fox, in ditto, 1862, p. 284.

493 ^  This excellent observer may be implicitly trusted; see 'Journal of Horticulture,' July 14th, 1863, p. 39.

494 ^  'Journal of Horticulture,' Sept. 9th, 1862, p. 463; see also Herr Kleine on same subject (Nov. 11th, p. 643), who sums up, that, though there is some variability in colour, no constant or perceptible differences can be detected in the bees of Germany.

495 ^  Mr. Woodbury has published several such accounts in 'Journal of Horticulture,' 1861 and 1862.

496 ^  'Annals and Mag. of Nat. Hist.,' 3rd series, vol. xi. p. 339.

497 ^  'The Cottage Gardener,' May, 1860, p. 110; and ditto in 'Journal of Hort.' 1862, p. 242.

498 ^  'Transact. Entomolog. Soc.,' 3rd series, vol. iii. pp. 143-173, and pp. 295-331.

499 ^  Godron, 'De l'Espèce,' 1859, tom. i. p. 460. The antiquity of the silk-worm in China is given on the authority of Stanislas Julien.

500 ^  See the remarks of Prof. Westwood, General Hearsey, and others, at the meeting of the Entomolog. Soc. of London, July, 1861.

501 ^  See, for instance, M. A. de Quatrefage's 'Etudes sur les Maladies actuelles du Ver à Soie,' 1859, p. 101.

502 ^  My authorities for these statements will be given in the chapter on Selection.

503 ^  'Manuel de l'Educateur de Vers à Soie,' 1848.

504 ^  Robinet, idem, pp. 12, 318. I may add that the eggs of N. American silk-worms taken to the Sandwich Islands were very irregularly developed; and the moths thus raised produced eggs which were even worse in this respect. Some were hatched in ten days, and others not until after the lapse of many months. No doubt a regular early character would ultimately have been acquired. See review in Athenæum,' 1844, p. 329, of J. Jarves' 'Scenes in the Sandwich Islands.'

505 ^  'The Art of rearing Silk-worms,' translated from Count Dandolo, 1825, p. 23.

506 ^  'Transact. Ent. Soc.,' ut supra, pp. 153, 308.

507 ^  Robinet, idem, p. 317.

508 ^  Robinet, idem, pp. 306-317.

509 ^  'Transact. Ent. Soc.,' ut supra, p. 317.

510 ^  Stephens' Illustrations, 'Haustellala,' vol. ii. p. 35. See also Capt. Hutton, 'Transact. Ent. Soc.' idem, p. 152.

511 ^  'Etudes sur les Maladies du Ver à Soie,' 1859, pp. 304, 209.

512 ^  Quatrefages, 'Etudes,' &c., p. 214.

513 ^  'Transact. Ent. Soc.,' ut supra, p. 151.

514 ^  'Manuel de l'Educateur,' &c., p. 26.

515 ^  Godron, 'De l'Espèce,' p. 462.

516 ^  Quatrefages, 'Etudes,' &c., pp. 12, 209, 214.

517 ^  Robinet, 'Manuel,' &c., p. 303.

518 ^  Robinet, idem, p. 15.