Page:A Dynamical Theory of the Electromagnetic Field.pdf/44

From Wikisource
Jump to navigation Jump to search
This page has been validated.

The equations of electric currents (C) remain as before.

The equations of electric elasticity (E) will be


where , , and are the values of for the axes of .

Combining these equations with (A) and (D), we get equations of the form


(104) If are the directions-cosines of the wave, and V its velocity, and if


then F, G, H, and will be functions of w, and if we put F', G', H', for the second differentials of these quantities with respect to , the equations will be


If we now put


and shall find


with two similar equations for G' and H'. Hence either




The third supposition indicates that the resultant of F', G', H' is in the direction normal to the plane of the wave; but the equations do not indicate that such a disturbance, if possible, could be propagated, as we have no other relation between and F, G', H'.

The solution refers to a case in which there is no propagation.

The solution gives two values for corresponding to values of F, G', H', which