Page:A Dynamical Theory of the Electromagnetic Field.pdf/6

From Wikisource
Jump to navigation Jump to search
This page has been validated.
464
PROFESSOR CLERK MAXWELL ON THE ELECTROMAGNETIC FIELD.

same substances, if dielectrics, may possess the analogous electrical property, and if magnetic, may have corresponding properties relating to the acquisition, retention, and loss of magnetic polarity.

(15) It appears therefore that certain phenomena in electricity and magnetism lead to the same conclusion as those of optics, namely, that there is an ethereal medium pervading all bodies, and modified only in degree by their presence; that the parts of this medium are capable of being set in motion by electric currents and magnets; that this motion is communicated from one part of the medium to another by forces arising from the connections of those parts; that under the action of these forces there is a certain yielding depending on the elasticity of these connections; and that therefore energy in two different forms may exist in the medium, the one form being the actual energy of motion of its parts, and the other being the potential energy stored up in the connections, in virtue of their elasticity.

(16) Thus, then, we are led to the conception of a complicated mechanism capable of a vast variety of motion, but at the same time, so connected that the motion of one part depends, according to definite relations, on the motion of other parts, these motions being communicated by forces arising from the relative displacement of the connected parts, in virtue of their elasticity. Such a mechanism must be subject to the general laws of Dynamics, and we ought to be able to work out all the consequences of its motion, provided we know the form of the relation between the motions of the parts.

(17) We know that when an electric current is established in a conducting circuit, the neighbouring part of the field is characterized by certain magnetic properties, and that if two circuits are in the field, the magnetic properties of the field due to the two currents are combined. Thus each part of the field is in connexion with both currents, and the two currents are put in connexion with each other in virtue of their connexion with the magnetization of the field. The first result of this connexion that I propose to examine, is the induction of one current by another, and by the motion of conductors in the field.

The second result, which is deduced from this, is the mechanical action between conductors carrying currents. The phenomenon of the induction of currents has been deduced from their mechanical action by Helmoltz[1] and Thomson[2]. I have followed the reverse order, and deduced the mechanical action from the laws of induction. I have then described experimental methods of determining the quantities L, M, N, on which these phenomena depend.

(18) I then apply the phenomena of induction and attraction of currents to the exploration of the electromagnetic field, and the laying down systems of lines of magnetic force which indicate its magnetic properties. By exploring the same field with a magnet, I show the distribution of its equipotential magnetic surfaces, cutting the lines of force at right angles.

  1. "Conservation of Forces", Physical Society of Berlin, 1847; and Taylor's Scientific Memoirs, 1853, p. 114.
  2. Reports of the British Association, 1848; Philosophical Magazine, Dec. 1851.