616.]
VECTOR-POTENTIAL OF CURRENTS.
235
According to our hypothesis a , b , c are identical with μα, μβ, μγ respectively. We therefore obtain
4
π
μ
u
=
d
2
G
d
x
d
y
−
d
2
F
d
y
2
−
d
2
F
d
2
z
+
d
2
H
d
z
d
x
.
{\displaystyle 4\pi \mu u={\frac {d^{2}G}{dx\,dy}}-{\frac {d^{2}F}{dy^{2}}}-{\frac {d^{2}F}{d^{2}z}}+{\frac {d^{2}H}{dz\,dx}}.}
(1)
If we write
J
=
d
F
d
x
+
d
G
d
y
+
d
H
d
z
,
{\displaystyle J={\frac {dF}{dx}}+{\frac {dG}{dy}}+{\frac {dH}{dz}},}
(2)
∇
2
=
−
(
d
2
d
x
2
+
d
2
d
y
2
+
d
2
d
z
2
)
,
{\displaystyle \nabla ^{2}=-\left({\frac {d^{2}}{dx^{2}}}+{\frac {d^{2}}{dy^{2}}}+{\frac {d^{2}}{dz^{2}}}\right),}
(3)
we may write equation (1),
Similarly,
4
π
μ
u
=
d
J
d
x
+
∇
2
F
.
4
π
μ
v
=
d
J
d
y
+
∇
2
G
,
4
π
μ
w
=
d
J
d
z
+
∇
2
H
.
}
{\displaystyle \left.{\begin{aligned}4\pi \mu u&={\frac {dJ}{dx}}+\nabla ^{2}F.\\4\pi \mu v&={\frac {dJ}{dy}}+\nabla ^{2}G,\\4\pi \mu w&={\frac {dJ}{dz}}+\nabla ^{2}H.\end{aligned}}\right\}}
(4)
If we write
F
′
=
1
μ
∭
u
r
d
x
d
y
d
z
,
G
′
=
1
μ
∭
v
r
d
x
d
y
d
z
,
H
′
=
1
μ
∭
r
r
d
x
d
y
d
z
.
}
{\displaystyle \left.{\begin{aligned}F'={\frac {1}{\mu }}\iiint {{\frac {u}{r}}dx\,dy\,dz,}\\G'={\frac {1}{\mu }}\iiint {{\frac {v}{r}}dx\,dy\,dz,}\\H'={\frac {1}{\mu }}\iiint {{\frac {r}{r}}dx\,dy\,dz.}\end{aligned}}\right\}}
(5)
χ
=
4
π
μ
∭
J
r
d
x
d
y
d
z
,
{\displaystyle \chi ={\frac {4\pi }{\mu }}\iiint {{\frac {J}{r}}dx\,dy\,dz},}
(6)
where r is the distance of the given point from the element x y z , and the integrations are to be extended over all space, then
F
=
F
′
+
d
χ
d
x
,
G
=
G
′
+
d
χ
d
y
,
H
=
H
′
+
d
χ
d
z
.
}
{\displaystyle \left.{\begin{aligned}F&=F'+{\frac {d\chi }{dx}},\\G&=G'+{\frac {d\chi }{dy}},\\H&=H'+{\frac {d\chi }{dz}}.\end{aligned}}\right\}}
(7)
The quantity χ disappears from the equations (A), and it is not
related to any physical phenomenon. If we suppose it to be zero
everywhere, J will also be zero everywhere, and equations (5),
omitting the accents, will give the true values of the components
of
A
{\displaystyle {\mathfrak {A}}}
.
↑ The negative sign is employed here in order to make our expressions consistent with those in which Quaternions are employed.